Main Article Content

Authors

Lipids represent the main source of energy in entomopathogenic nematodes. In the infective juvenile (IJ) phase, the level of such reserves can be influenced by storage, and this may affect their infectivity. The aim of this study was to evaluate the percentage of lipids and the associated infectivity in IJs of Steinernema carpocapsae, S. riobrave, Heterorhabditis sp. JPM4, Heterorhabditis sp. CCA and Heterorhabditis sp. PI that had been stored under different temperatures (8-28°C) for various times (0 to 180 days). The amounts of lipids present in IJs were evaluated histologically using a colorimetric method, while infectivity was assayed against Galleria mellonella larvae. Lipid levels diminished with increasing storage time for all nematodes, but the rates of decrease varied according to storage temperature and species. Lipid reserves were conserved for longer storage periods at 8, 16 and 20°C, while at 24 and 28°C the percentage of lipids decreased rapidly. The infectivities of IJs of Heterorhabditis spp. were less tolerant than those of Steinernema spp. to temperatures of 8, 24 and 28°C. Thus, while storage at 8°C was optimal for conserving lipid reserves, infectivity was best preserved at temperatures of 16 and 20°C gave rise to the least reduction in infectivities after 180 days of storage. In this way, lipids and infectivity are influenced by different storage temperatures for the species tested. These data are useful for greater success in using entomopathogenic nematodes as biocontrol agents.

ANDALÓ, V., MOINO JR, A., MAXIMINIANO, C., CAMPOS, V. P., & MENDONÇA, L. A. (2011). Influence of temperature and duration of storage on the lipid reserves of entomopathogenic nematodes. Revista Colombiana De Entomología, 37(2), 203–209. https://doi.org/10.25100/socolen.v37i2.9075

BARRETT, J.; WRIGHT, D. J. 1998. Intermediary metabolism. p. 331353. En: Perry, R. N.; Wright, D. J. (eds.). The physiology and biochemistry of free-living and plant-parasitic nematodes. CAB International. Wallingford. 448 p.

BORNSTEIN-FORST, S.; KIGER, H.; RECTOR, A. 2005. Impacts of fluctuating temperature on the development and infectivity of entomopathogenic nematode Steinernema carpocapsae A10. Journal of Invertebrate Pathology 88 (2): 147-153.

CHITWOOD, D. J. 1998. Biosynthesis. p. 303-330. En: Perry, R. N.; Wright, D. J. (eds.). The physiology and biochemistry of free-living and plant-parasitic nematodes. CAB International. Wallingford. 448 p.

CROLL, N. A. 1972. Energy utilization of infective Ancylostoma tubaeforme larvae. Parasitology 64 (3): 355-368.

DUTKY, S. R.; THOMPSON, J. V.; CANTWE, G. E. 1964. A technique for the mass propagation of the DD-136 nematode. Journal of Insect Pathology 6 (4): 417-422.

FINNEGAN, M.; DOWNES, M. J.; O’REGAN, M.; GRIFFIN, C. T. 1999. Effect of salt and temperature stresses on survival and infectivity of Heterorhabditis spp. infective juveniles. Nematology 1 (1): 69-78.

FITTERS, P. F. L.; GRIFFIN, C. T. 2004. Spontaneous and induced activity of Heterorhabditis megidis infective juveniles during storage. Nematology 6 (6): 911-917.

FITTERS, P.; PATEL, M. N.; GRIFFIN, C. T.; WRIGHT, D. J. 1999. Fatty acid composition of Heterorhabditis sp. during storage. Comparative Biochemistry and Physiology 124 (1): 81-88.

FODOR, A.; DEY, I.; FARKAS, T.; CHITWOOD, D. J. 1994. Effects of temperature and dietary lipids on phospholipid fatty acids and membrane fluidity in Steinernema carpocapsae. Journal of Nematology 26 (3): 278-285.

GEORGIS, R.; KOPPENHÖFER, A. M.; LACEY, L. A.; BÉLAIR, G.; DUNCAN, L. W.; GREWAL, P. S.; SAMISH, M.; TAN, L.; TORR, P.; VAN TOL, R. W. H. M. 2006. Successes and failures in the use of parasitic nematodes for pest control. Biological Control 38 (1): 103-123.

GLAZER, I.; SALAME, L. 2000. Osmotic survival of the entomopathogenic nematode Steinernema carpocapsae. Biological Control 18 (3): 251-257.

GREWAL, P. S. 2000. Anhydrobiotic potential and long-term storage of entomopathogenic nematodes (Rhabditida: Steinernematidae). International Journal for Parasitology 30 (14): 995-1000.

HASS, B.; DOWNES, M. J.; GRIFFIN, C. T. 2002. Persistence of four Heterorhabditis spp. isolates in soil: role of lipid reserves. Journal of Nematology 34 (2): 151-158.

HATAB, M. A.; GAUGLER, R. 1999. Lipids of in vitro cultured Heterorhabditis bacteriophora. Biological Control 15 (3): 113-118.

JAGDALE, G. B.; GREWAL, P. S. 2003. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance. International Journal for Parasitology 33 (2): 145-152.

LEE, D. L. 1960. The distribution of glycogen and fat in Thelastoma bulhõesi (Magalhães, 1900), a nematode parasitic in cockroaches. Parasitology 50: 247-259.

LEE, D. L.; ATKINSON, H. J. 1977. Physiology of nematodes. Columbia University, New York. 215 p.

LEWIS, E. E.; SELVAN, S.; CAMPBELL, J. F.; GAUGLER, R. 1995. Changes in foraging behaviour during the infective stages of entomopathogenic nematodes. Parasitology 110: 583-590.

MENTI, H.; PATEL, M. N.; WRIGHT, D. J.; PERRY, R. N. 2003. Lipid utilisation during storage of the entomopathogenic nematodes Steinernema feltiae and Heterorhabditis megidis from Greece and the UK. Nematology 5 (1): 31-37.

MOLINA, J. P.; LÓPEZ, N. J. C. 2001. Producción in vivo de tres entomonematodos con dos sistemas de infección en dos hospedantes. Revista Colombiana de Entomología 27 (1-2): 73-78.

PARRA, J. R. P. 1998. Criação de insetos para estudos com patógenos. p. 1015-1037. En: Alves, S. B. (ed.). Controle microbiano de insetos. FEALQ. Piracicaba. 1163 p.

PATEL, M. N.; WRIGHT, D. J. 1997. Phospholipid fatty acid composition in steinernematid entomopathogenic nematodes. Comparative Biochemistry and Physiology 118 (3): 649-657.

PATEL, M. N.; STOLINSKI, M.; WRIGHT, D. J. 1997. Neutral lipids and the assessment of infectivity in entomopathogenic nematodes: observations on four Steinernema species. Parasitology 114: 489-496.

QIU, L.; BEDDING, R. 2000. Energy metabolism and its relation to survival and infectivity of infective juveniles of Steinernema carpocapsae under aerobic conditions. Nematology 2: 551-559.

SERWE-RODRIGUEZ, J.; SONNENBERG, K.; APPLEMAN, B.; BORNSTEIN-FORST, S. 2004. Effects of in host desiccation on development, survival, and infectivity of entomopathogenic nematode Steinernema carpocapsae. Journal of Invertebrate Pathology 85 (3): 175-181.

STAMPS, T. W.; LINIT, M. J. 1995. A rapid and simple method for staining lipid in fixed nematodes. Journal of Nematology 27 (2): 244-247. STOREY, R. M. J. 1983. The initial neutral lipid reserves of juveniles of Globodera spp. Nematologica 29 (2): 144-150.

VAN GUNDY, S. D. 1985. Ecology of Meloidogyne spp.emphases on environmental factors affecting survival and pathogenicity. p. 177182. En: Sasser, J. N.; Carter, C. C. (eds.). An advanced treatise on Meloidogyne. North Carolina State University Graphics. Raleigh. 111 p.

WHITE, G. F. 1927. A method for obtaining infective nematode larvae from cultures. Science 66 (1709): 302-303.

WRIGHT, D. J.; PERRY, R. N. 2002. Physiology and biochemistry. p. 145-168. En: Gaugler R. (ed.). Entomopathogenic nematology. CAB International. Wallingford. 388 p.

WRIGHT, D. J.; GREWAL, P. S.; STOLINSKI, M. 1997. Relative importance of neutral lipids and glycogen as energy stores in dauer larvae of two entomopathogenic nematodes, Steinernema carpocapsae and Steinernema feltiae. Comparative Biochemistry and Physiology 118 (2): 269-273.

Similar Articles

You may also start an advanced similarity search for this article.