Main Article Content


The cassava green mite, Mononychellus tanajoa, is an important pest of cassava, Manihot esculenta (Euphorbiaceae), in the northeastern state of Maranhão, Brazil. Predatory mites of the family Phytoseiidae are key natural enemies of pest mites and are found inhabiting cassava plants. We compared some biological aspects and the growth rate of M. tanajoa and the generalist phytoseiid Euseius ho the most abundant predatory mite inhabiting cassava plants in the study region. All experiments were conducted in the laboratory on leaf discs of cassava leaves. The predatory mite was fed in all developmental stages with M. tanajoa. Euseius ho had lower periods of egg, larva, protonymph and deutonymph developmental periods, as well as the period from egg to adult compared to M. tanajoa. Furthermore, the predatory mite E. ho had a high instantaneous rate of increase (ri), yet lower than that observed for its prey, the cassava green mite M. tanajoa. The laboratory results suggest that the predatory mite E. ho may contribute to regulate populations of M. tanajoa in the field.

RÊGO, A. S., MACIEL, A. G. S., COSTA, ÉVILA C., SILVA, E. A., & TEODORO, A. V. (2012). Comparative biology and growth rate of the mites Mononychellus tanajoa and Euseius ho (Acari) on cassava. Revista Colombiana De Entomología, 38(2), 243–246.

BRUCE-OLIVER, S. J.; HOY, M. A.; YANINEK, J. S. 1996. Effect of some food sources associated with cassava in Africa on the development, fecundity and longevity of Euseius fustis (Pritchard and Baker) (Acari: Phytoseiidae). Experimental and Applied Acarology 20 (2): 73-85.

DELALIBERA Jr., I.; HAJEK, A. E. 2004. Pathogenicity and specificity of Neozygites tanajoae and Neozygites floridana (Zygomycetes: Entomophthorales) isolates pathogenic to the cassava green mite. Biological Control 30 (3): 608-616.

DELALIBERA Jr., I.; HAJEK, A. E.; HUMBER, R. A. 2004. Neozygites tanajoae sp. nov., a pathogen of the cassava green mite. Mycologia 96 (5): 1002-1009.

DICKE, M.; SABELIS, M. W.; JONG, M.; DE ALERS, M. P. T. 1990. Do phytoseiid mites select the best prey species in terms of reproductive success? Experimental and Applied Acarology 8 (3): 161-173.

GNANVOSSOU, D.; YANINEK, J. S.; HANNA, R.; DICKE, M. 2003. Effects of prey mite species on life history of the phytoseiid predators Typhlodromalus manihoti and Typhlodromalus aripo. Experimental and Applied Acarology 30 (4): 265-278.

HANNA, R.; ONZO, A.; LINGEMAN, R.; SABELIS, M. W.; YANINEK, J. S. 2005. Seasonal cycles and persistence of an acarine predator-prey system on cassava in Africa. Population Ecology 47 (2): 107-117.

HENRY, G.; HERSHEY, C. 2002. Cassava in South America and the Caribbean. pp. 17-40. In: Hillocks, R. J.; Tresh, J. M.; Bellotti, A. C. (Eds.). Cassava: Biology, Production and Utilization. CABI International, Wallingford, UK, 332 p.

HILLOCKS, R. J. 2002. Cassava in Africa. pp. 40-54. In: Hillocks, R. J.; Tresh, J. M.; Bellotti, A. C. (Eds.). Cassava: Biology, Production and Utilization. CABI International, Wallingford, UK, 332 p.

KENNEDY, G. G.; STORER, N. P. 2000. Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Annual Review of Entomology 45 (1): 467-493.

LANDIS, D. A.; WRATTEN, S. D.; GURR, G. M. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology 45 (1): 175-201.

LETOURNEAU, D. K.; ALTIERI, M. A. 1999. Environmental management to enhamce biological control in agroecosystems. pp. 319-354. In: Bellows, T. S.; Fisher, T. W. (Eds.). Handbook of Biological Control. Academic Press, San Diego, USA, 1046 p.

McMURTRY, J. A.; HUFFAKER, C. B.; VAN DE VRIE, M. 1970. Ecology of tetranychid mites and their natural enemies: A review I. Tetranychidae enemies: their biological characters and the impact of spray practices. Hilgardia 40 (1): 331-390.

McMURTRY, J. A.; CROFT, B. A. 1997. Life styles of phytoseiid mites and their roles in biological control. Annual Review of Entomology 42 (1): 291-321.

MELO, J. W. S.; DOMINGOS, C. A.; GONDIM JUNIOR, M. G. C.; DE MORAES, G. J. 2009. Pode Euseius alatus DeLeon (Acari: Phytoseiidae) predar Aceria guerreronis Keifer (Acari: Eriophyidae) em coqueiro? Neotropical Entomology 38 (1): 139-143.

MORAES, G. J.; MCMURTRY, J. A. 1981. Biology of Amblyseius citrifolius (Denmark and Muma) (Acarina: Phytoseiidae). Hilgardia 49 (1): 1-29.

MORAES, G. J.; LIMA, H. C. 1983. Biology of Euseius concordis (Chant) (Acarina: Phytoseiidae) a predator of the tomato russet mite. Acarologia 24 (3): 251-255.

MORAES, G. J.; MCMURTRY, J. A.; DENMARK, H. A.; CAMPOS, C. B. 2004. A revised catalog of the mite family Phytoseiidae. Zootaxa (434). Magnolia Press, Auckland, New Zealand, 494 p.

MORAES, G. J.; FLECHTMANN, C. H. W. 2008. Manual de Acarologia: acarologia básica e ácaros de plantas cultivadas no Brasil. Holos, Ribeirão Preto, Brazil, 308 p.

PRATT, P. D.; ROSETTA, R.; CROFT, B. A. 2002. Plant-related factors influence the effectiveness of Neoseiulus fallacis (Acari: Phytoseiidae), a biological control agent of spider mites on landscape ornamental plants. Journal of Economic Entomology 95 (6): 1135-1141.

SARMENTO, R. A.; RODRIGUES, D. M.; FARAJI, F.; ERASMO, E. A. L.; LEMOS, F.; TEODORO, A. V.; KIKUCHI, W.; SANTOS, G. R.; PALLINI, A. 2011. Suitability of the predatory mites Iphiseiodes zuluagai and Euseius concordis in controlling Polyphagotarsonemus latus and Tetranychus bastosi on Jatropha curcas plants in Brazil. Experimental and Applied Acarology 53 (3): 203-214.

STARK, J. D.; TANIGOSHI, L.; BOUNFOUR, M.; ANTONELLI, A. 1997. Reproductive potential: its influence on the susceptibility of a species to pesticides. Ecotoxicology and Environmental Safety 37 (3): 273-279.

SOKAL, R. R.; ROHLF, F. J. 1995. Biometry: the principles and practice of statistics in biological research. Freeman and Co, New York, 887 p.

SUJA, G.; JOHN, S. K.; SREEKUMAR, J.; SRINIVAS, T. 2010. Short-duration cassava genotypes for crop diversification in the humid tropics: growth dynamics, biomass, yield and quality. Journal of the Science of Food and Agriculture 90 (2): 188-198. STATSOFT INC. 2004. Statistica for Windows (Software-system for data-analyses), Version 7.0. Tulsa, USA.

TSITSILAS, A.; HOFFMANN, A. A.; WEEKS, A. R.; UMINA, P. A. 2011. Impact of groundcover manipulations within windbreaks on mite pests and their natural enemies. Australian Journal of Entomology 50 (1): 37-47.

VANTORNHOUT, I.; MINNAERT, H. L.; TIRRY, L.; DE CLERCQ, P. 2004. Effect of pollen, natural prey and factitious prey on the development of Iphiseius degenerans. BioControl 49 (6): 627-644.

WALTHALL, W. K.; STARK, J. D. 1997a. Comparison of acute mortality and population growth rate as endpoints of toxicological effect. Ecotoxicology and Environmental Safety 37 (1): 45-52.

WALTHALL, W. K.; STARK, J. D. 1997b. Comparison of two population-level ecotoxicological endpoints: the intrinsic (r ) and instantaneous (r ) rates of increase. Environmental Toxicology and Chemistry 16 (5): 1068-1073.

YANINEK, J. S.; DE MORAES, G. J.; MARKHAM, R. H. 1989. Handbook on the cassava green mite Mononychellus tanajoa in Africa. Ibadan: International Institute of Tropical Agriculture, Benin, 140 p.

YANINEK, J. S.; GUTIERREZ, A. P.; HERREN, H. R. 1990. Dynamics of Mononychellus tanajoa (Acari: Tetranychidae) in Africa: impact on dry matter production and allocation in cassava, Manihot esculenta. Environmental Entomology 19 (6): 1767-1772.

YANINEK, J. S.; HANNA, R. 2003. Cassava green mite in Africa: a unique example of successful classical biological control of a mite pest on a continental scale. pp. 61-75. In: Neuenschwander, P.; Borgemeister, C.; Langewald, J. (Eds.). Biological control in IPM systems in Africa. CABI International, Wallingford, UK, 414 p.

ZUNDEL C.; NAGEL, P.; HANNA, R.; KORNER, F.; SCHEIDEGGER, U. 2009. Environment and host-plant genotype effects on the seasonal dynamics of a predatory mite on cassava in sub-humid tropical Africa. Agricultural and Forest Entomology 11 (3): 321-331.

Similar Articles

You may also start an advanced similarity search for this article.