Main Article Content

Authors

In this study, the effect of temperature on the phenotypic expression of size, elongation (length/width) and costal wing spots among families, progenies and sexes was evaluated through traditional morphometry in populations of Nyssorhynchus triannulatus from southern Colombia. In the progenies of 11 families, obtained at 20, 24 and 28 °C the wings showed four costal spots patterns. Pattern I was present in all three breeding temperatures with the highest frequency. Within families, the average length/width of wing ratio was significantly higher in males than females, while the variation by sex of this character was similar. Among the families, the temperature had variable influence on the sizes of wings and costal spots. Within the components of phenotypic variation, the breeding temperature had no significant detectable effect on the length of the wing and several of the analyzed characters; however, the proportion of the subcostal pale spot length over the length of the distal sector dark spot (SCP/DSD) was the most sensitive to temperature changes. The genetic contribution of the wing size and the measured characters length, as well as the effect of the families (origin) on the phenotypic variation, was significant for almost all the characters analyzed. The effect of the sexes on the phenotypic variation of the studied characters was significant only for some characters, while there were few significant interactions between the three factors analyzed (temperature, family and sex) with a low effect on the phenotypic variation.

González Obando, R., Cárdenas Henao , H., & Marín Londoño, O. A. . (2021). Temperature effect on the phenotypic expression of characters of costal spots Nyssorhynchus triannulatus (Diptera: Culicidae: Anophelinae). Revista Colombiana De Entomología, 47(1), 1–17. https://doi.org/10.25100/socolen.v47i1.8456

ARAÚJO, M. da-S.; GIL, L. H. S.; E-SILVA, A. de-A. 2012. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions. Malaria Journal 11: 261. https://doi.org/10.1186/1475-2875-11-261

BADYAEV, A. V. 2002. Growing apart: An ontogenetic perspective on the evolution of sexual size dimorphism. Trends in Ecology & Evolution 17 (8): 369-378. https://doi.org/10.1016/S0169-5347(02)02569-7

BELEN, A.; ALTEN, B.; AYTEKIN, A. M. 2004. Altitudinal variation in morphometric and molecular characteristics of Phlebotomus papatasi populations. Medical and Veterinary Entomology 18 (4): 343-350. https://doi.org/10.1111/j.0269-283X.2004.00514.x

BLAND J. M.; ALTMAN, D. G. 1995. Multiple significance tests: the Bonferroni method. British Medical Journal 310-170. https://doi.org/10.1136/bmj.310.6973.170

BOMPHREY, R.; NAKATA, T.; PHILLIPS, N.; WALKER, S. M. 2017. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature 544: 92-95. https://doi.org/10.1038/nature21727

BOURKE, P. M.; VOORRIPS, R. E.; VISSERET, R. G. F.; MALIEPAARD, C. 2018. Tools for genetic studies in experimental populations of polyploids. Frontiers in Plant Science 9: 1-19. https://doi.org/10.3389/fpls.2018.00513

BUSTAMANTE, D. M.; MONROY, C.; MENES, M.; RODAS, A.; SALAZAR-SCHETTINO, P. M.; ROJAS, G.; PINTO, N.; GUHL, F.; DUJARDIN, J. P. 2004. Metric variation among geographic populations of the Chagas vector Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae) and related species. Journal of Medical Entomology 41 (3): 296-301. https://doi.org/10.1603/0022-2585-41.3.296

CALLE L., D. A.; QUIÑONES, M. L.; ERAZO, H. F.; JARAMILLO O., N. 2002. Morphometric discrimination of females of five species of Anopheles of the subgenus Nyssorhynchus from Southern and Northwest Colombia. Memorias do Instituto Oswaldo Cruz 97 (8): 1191-1195. https://doi.org/10.1590/S0074-02762002000800021

CAZORLA P., D. 2009. Multivariate morphometric differentiation between females of two cryptic species of Lutzomyia subgenus Helcocyrtomyia (Diptera: Psychodidae). Revista Colombiana de Entomología 35 (2): 197-201. ISSN 0120-0488. http://www.scielo.org.co/pdf/rcen/v35n2/v35n2a15.pdf

CERÓN-MUÑOZ, H. D.; COSIN, R.; COIMBRA, R. F. F.; CORREA, L. G. N.; CATALANO, F. M. 2013. Experimental investigation of wing-tip devices on the reduction of induced drag. Journal of Aircraft 50 (2): 441-449. https://doi.org/10.2514/1.C031862

CHARLWOOD, J. D. 1996. Biological variation in Anopheles darlingi Root. Memorias do Instituto Oswaldo Cruz 91 (4): 391-398.

DANTUR JURI, M. J.; LIRIA, J.; NAVARRO, J. C.; RODRÍGUEZ, R.; FRITZ, G. N. 2011. Morphometric variability of Anopheles pseudopunctipennis (Diptera: Culicidae) from different ecoregions of Argentina and Bolivia. Florida Entomologist 94 (3): 428-438. https://doi.org/10.1653/024.094.0307

DOS SANTOS SILVA, J.; CARBAJAL DE LA FUENTE, A. L.; SERRA-FREIRE, N. M.; GUIMARAES, A. E.; SOARES SARMENTO, J.; ALENCAR, J. 2012. Morphometric analysis of Chagasia fajardi (Diptera: Culicidae) populations in Brazil. Revista Colombiana de Entomología 38 (2): 276-281. http://www.scielo.org.co/pdf/rcen/v38n2/v38n2a19.pdf

DUDLEY, R. 2002. The biomechanics of insect flight: Form, function, evolution. Princeton, New Jersey: Princeton University Press, EE. UU. 476 p. https://doi.org/10.2307/j.ctv301g2x

DUJARDIN, J. P. 2011. 16 - Modern morphometrics of medically important insects. pp. 473-501. En: Tibayrenc, M. (Ed.). Genetics and evolution of infectious disease. Elsevier. Londres, Inglaterra. 772 p. https://doi.org/10.1016/B978-0-12-384890-1.00016-9

FAJARDO RAMOS, M.; GONZÁLEZ OBANDO, R.; SUÁREZ, M. F.; LÓPEZ, D.; WILKERSON, R.; SALLUM, M. A. M. 2008. Morphological analysis of three populations of Anopheles (Nyssorhynchus) nuneztovari Gabaldón (Diptera: Culicidae) from Colombia. Memorias do Instituto Oswaldo Cruz 103 (1): 85-92. https://doi.org/10.1590/S0074-02762008000100013

FALCONER, D. S.; MACKAY, T. F. C. 1996. Introduction to quantitative genetics. Longman Scientific and Technical. Essex, Reino Unido. 464 p.

FARAN, M. E. 1980. Mosquito studies (Diptera: Culicidae) XXXIV. A revision of the Albimanus section of the subgenus Nyssorhynchus of Anopheles. American Entomology Institute 15 (7): 1-216. http://mosquito-taxonomic-inventory.info/sites/mosquito-taxonomic-inventory.info/files/Faran%201980.pdf

FARAN, M. E.; LINTHICUM, K. J. 1981. A handbook of the Amazonian species of Anopheles (Nyssorhynchus) (Diptera, Culicidae). Mosquito Systematic 13 (1): 1-81. http://mosquito-taxonomic-inventory.info/sites/mosquito-taxonomic-inventory.info/files/Faran%20%26%20Linthicum%201981.pdf

FOSTER, P. G.; OLIVEIRA, T. M.; BERGO, E. S.; CONN, J. E.; SANTANA, D. C.; NAGAKI, S. S.; NIHEI, S.; LAMAS, C. E.; GONZÁLEZ, C.; MOREIRA, C. C.; MUREB SALLUM, M. A. 2017. Phylogeny of Anophelinae using mitochondrial protein coding genes. The Royal Society Open Science 4: 170758. https://doi.org/10.1098/rsos.170758

FREEMAN, M. F.; TUKEY, J. W. 1950. Transformations related to the angular and the square root. The Annals of Mathematical Statistics 21 (4): 607-611. https://doi.org/10.1214/aoms/1177729756

FUSCO, G.; MINELLI, A. 2010. Phenotypic plasticity in development and evolution: facts and concepts. Philosophical Transactions of the Royal Society Biological 365: 547-556. https://doi.org/10.1098/rstb.2009.0267

GÓMEZ, G. F.; CORREA, M. M. 2017. Discrimination of Neotropical Anopheles species based on molecular and wing geometric morphometric traits. Infection, Genetics and Evolution 54: 379-386. https://doi.org/10.1016/j.meegid.2017.07.028

GÓMEZ, G.; JARAMILLO, L.; CORREA, M. M. 2013. Wing geometric morphometrics and molecular assessment of members in the Albitarsis complex from Colombia. Molecular Ecology Resources 13 (6): 1082-1092. https://doi.org/10.1111/1755-0998.12126

GÓMEZ, G. F.; MÁRQUEZ, E. J.; GUTIÉRREZ, L. A.; CONN, J. E.; CORREA, M. M. 2014. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation. Acta Tropica 135: 75-85. https://doi.org/10.1016/j.actatropica.2014.03.020

GÓMEZ, G. F.; BICKERSMITH, S. A.; GONZÁLEZ, R.; CONN, J. E.; CORREA, M. M. 2015. Molecular taxonomy provides new insights into Anopheles species of the neotropical Arribalzagia series. PLoS ONE 10 (3): e0119488. https://doi.org/10.1371/journal.pone.0119488

GONZÁLEZ, R.; CARREJO, N.; WILKERSON, R. C.; ALARCON, J.; ALARCON-ORMASA, J.; RUIZ, F.; BHATIA, R.; LOAIZA, J.; LINTON, Y-M. 2010. Confirmation of Anopheles (Anopheles) calderoni Wilkerson, 1991 (Diptera: Culicidae) in Colombia and Ecuador through molecular and morphological correlation with topotypic material. Memorias do Instituto Oswaldo Cruz 105 (8): 1001-1019. https://doi.org/10.1590/S0074-02762010000800009

GONZÁLEZ OBANDO, R.; CARREJO GIRONZA, N. S. 2009. Introducción al estudio taxonómico de Anopheles de Colombia: claves y notas de distribución. 2nd ed., Universidad del Valle; Cali, Colombia. 260 p. https://doi.org/10.2307/j.ctv14jx88t

HRIBAR, L. J. 1995. Costal wing spot variations within and among progeny of single female Anopheles nuneztovari (Diptera: Culicidae). Mosquito Systematics 27: 1-10.

KIHLBERG, J. K.; HERSON, J. H.; SCHOTZ, W. E. 1972. Square root transformation revisited. Journal of Statistics Society 21 (1): 76-81. https://doi.org/10.2307/2346609

LANCIANI, C. A.; LE, T. M. 1995. Effect of temperature on the wing length- body weight relationship in Anopheles quadrimaculatus. Journal of the American Mosquito Control Association 11 (2): 241-243.

LEVENE, H. 1960. Robust tests for equality of variances. pp. 278-292. En: Olkin, I.; Ghurye, S. G.; Hoeffding, W.; Madow, W. G.; Mann, H. B. (Eds.). Contributions to probability and statistics: essays in honor of harold hotelling. Stanford University Press. California, EE. UU. 517 p.

LINTHICUM, K. J. 1988. A revision of the Argyritarsis section of the subgenus Nyssorhynchus of Anopheles (Diptera: Culicidae). Mosquito Systematic 20 (2): 98-174. http://mosquito-taxonomic-inventory.info/sites/mosquito-taxonomic-inventory.info/files/Linthicum%201988.pdf

LORENZ, C.; MARQUES, T. C.; SALLUM, M. A. M.; SUESDEK, L. 2014. Altitudinal population structure and microevolution of the malaria vector Anopheles cruzii (Diptera: Culicidae). Parasites and Vectors 7: 581. https://doi.org/10.1186/s13071-014-0581-8

MARÍN LONDOÑO, O. A. 2014. Variación morfométrica en el patrón alar de Anopheles triannulatus de cuatro poblaciones de Colombia. Boletín del Museo de Entomología de la Universidad del Valle 15 (2): 17-32.

MILLER, C. W.; SVENSSON, E. I. 2014. Sexual selection in complex environments. The Annual Review of Entomology 59: 427-445. https://doi.org/10.1146/annurev-ento-011613-162044

MORENO, M.; BICKERSMITH, S.; HARLOW, W.; HILDEBRANDT, J.; McKEON, S. N.; SILVA-DO-NASCIMENTO, T. F.; LOAIZA, J. R.; RUÍZ, F.; LOURENÇO-DE-OLIVEIRA, R.; SALLUM, M. A. M.; BERGO, E. S.; FRITZ, G. N.; WILKERSON, R. C.; LINTON, Y. M.; DANTUR JURI, M. J.; RANGEL, Y.; PÓVOA, M. M.; GUTIÉRREZ-BUILES, L. A.; CORREA, M. M.; CONN, J. E. 2013. Phylogeography of the neotropical Anopheles triannulatus complex (Diptera: Culicidae) supports deep structure and complex patterns. Parasites and Vectors 6: 47-64. https://doi.org/10.1186/1756-3305-6-47

MOTOKI, M. T.; SUESDEK, L.; STERLINO BERGO, E.; MUREB SALLUM, M. A. 2012. Wing geometry of Anopheles darlingi Root (Diptera: Culicidae) in five major Brazilian ecoregions. Infection, Genetics and Evolution 12 (6): 1246-1252. https://doi.org/10.1016/j.meegid.2012.04.002

MÜLLER, G. B. 2007. Evo-devo: extending the evolutionary synthesis. Nature Reviews Genetics 8 (12): 943-949. https://doi.org/10.1038/nrg2219

NORBERG, U. M. 1995. How a long tail and changes in mass and wing shape affect the cost for flight in animals. Functional Ecology 9 (1): 48-54. https://doi.org/10.2307/2390089

OLOF, L.; BENGT, K.; CHRISTER, W. 1994. Unpredictable food and sexual size dimorphism in insects. Proceedings of the Royal Society of London, Series B 258: 121-125. https://doi.org/10.1098/rspb.1994.0151

PACHECO, M. A.; GONZÁLEZ, R.; BROCHERO, H. L. 2017. Anopheles darlingi (Diptera: Culicidae) Root 1926: variaciones morfométricas en alas y patas de poblaciones de Colombia. Biomédica 37 (Suppl. 2): 124-134. https://doi.org/10.7705/biomedica.v37i0.3492

PACHECO-GÓMEZ, M. A.; GONZÁLEZ-OBANDO, R.; BROCHERO, H. L. 2018. Morphometric variations of two populations of Anopheles albitarsis F (Diptera: Culicidae) in the Orinoquia region, Colombia. Revista de Facultad de Medicina 66 (2): 201-208. http://doi.org/10.15446/revfacmed.v66n2.61071

PETRARCA, V.; SABATELLI, G.; TOURÉ, Y. T; DI DIDECO, M. A. 1998. Morphometric multivariate analysis in Anopheles gambiae s.s. (Diptera: Culicidae), Journal of Medical Entomology 35 (1): 16-25. https://doi.org/10.1093/jmedent/35.1.16

PETRIE, M.; HALLIDAY, T.; SANDERS, C. 1991. Peahens prefer peacocks with elaborate trains. Animal Behaviour 41 (2): 323-331. https://doi.org/10.1016/S0003-3472(05)80484-1

RICHARDSON, J. B.; JAMESON, S. B.; GLORIA-SORIA, A.; WESSON, D. M.; POWELL, J. 2015. Evidence of limited polyandry in a natural population of Aedes aegypti. The American Journal of Tropical Medicine and Hygiene 93 (1): 189-193. http://doi.org/10.4269/ajtmh.14-0718

RODRÍGUEZ-ZABALA, J.; GONZÁLEZ, R.; CORREA, M. M.; GÓMEZ, G. F. 2016. Análisis morfométrico de dos poblaciones de Anopheles (Anopheles) calderoni (Diptera: Culicidae) del suroccidente colombiano. Revista Mexicana de Biodiversidad 87 (3): 966-971. http://doi.org/10.1016/j.rmb.2016.06.005

ROSA-FREITAS, M. G.; DEANE, L. M.; MOMEN, H. 1990. A morphological, isoenzymatic and behavioural study of ten populations of Anopheles (Nyssorhynchus) albitarsis Lynch-Arribalzaga, 1878 (Diptera: Culicidae) including from the type locality - Baradero, Argentina. Memorias do Instituto Oswaldo Cruz 85 (3): 275-289. https://doi.org/10.1590/S0074-02761990000300004

RUBIO-PALIS, Y. 2000. Anopheles (Nyssorhynchus) de Venezuela Taxonomía, bionomía, ecología e importancia médica. Escuela de Malariología y Saneamiento Ambiental “Dr. Arnoldo Gabaldón”. Maracay, Venezuela. 120 p.

SARAIVA, J. F.; SOUTO, R. N. P.; SCARPASSA, V. M. 2018. Molecular taxonomy and evolutionary relationships in the Oswaldoi-Konderi complex (Anophelinae: Anopheles: Nyssorhynchus) from the Brazilian Amazon region. PLoS ONE 13 (3): e0193591. https://doi.org/10.1371/journal.pone.0193591

SCARPASSA, V. M.; CUNHA-MACHADO, A. S.; SARAIVA, J. F. 2016. Evidence of new species for malaria vector Anopheles nuneztovari sensu lato in the Brazilian Amazon region. Malaria Journal 15: 205. https://doi.org/10.1186/s12936-016-1217-6

SHUTT, B.; STABLES, L.; ABOAGYE-ANTWI, F.; MORAN, J.; TRIPET, F. 2010. Male accessory gland proteins induce female monogamy in anopheline mosquitoes. Medical and Veterinary Entomology 24 (1): 91-94. https://doi.org/10.1111/j.1365-2915.2009.00849.x

SILVA DO NASCIMENTO, T. F.; LOURENCO-DE-OLIVEIRA, R. 2002. Anopheles halophylus, a new species of the subgenus Nyssorhynchus (Diptera: Culicidae) from Brazil. Memorias do Instituto Oswaldo Cruz 97 (6): 801-811. https://doi.org/10.1590/S0074-02762002000600010

SILVA-DO-NASCIMENTO, T. F.; WILKERSON, R. C.; LOURENÇO-DE-OLIVEIRA, R.; MONTEIRO, F. A. 2006. Molecular confirmation of the specific status of Anopheles halophylus (Diptera: Culicidae) and evidence of a new cryptic species within An. triannulatus in Central Brazil. Journal of Medical Entomology 43 (3): 455-459. https://doi.org/10.1093/jmedent/43.3.455

SUEUR, D. L.; SHARP, B. L.; APPLETON, C. C. 1992. Dark-scaled areas on adult Anopheles mosquitoes are selectively affected by temperature-related size variation. Medical and Veterinary Entomology 6 (4): 396-398. https://doi.org/10.1111/j.1365-2915.1992.tb00641.x

THORNHILL, R.; ALCOCK, J. 1983. The evolution of insect mating systems. Harvard University Press, Cambridge, EE. UU. 547 p.

TRIPET, F.; TOURE, Y. T.; DOLO, G.; LANZARO, G. C. 2003. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. The American Journal Tropical Medicine and Hygiene 68 (1): 1-5. https://doi.org/10.4269/ajtmh.2003.68.1.0680001

WILKERSON, R. C.; PEYTON, E. L. 1990. Standardized nomenclature for the costal wing spots of the genus Anopheles and other spotted-wing mosquitoes (Diptera: Culicidae). Journal of Medical Entomology 27 (2): 207-224. https://doi.org/10.1093/jmedent/27.2.207

Received 2019-08-28
Accepted 2021-01-29
Published 2021-04-13