Main Article Content

It is essential to understand the effects of sublethal concentrations of insecticides have on the dynamics, biology, and development of pests such as Plutella xylostella, one of the most important pests in the world. This species can develop resistance to the insecticides used for its control. In the present study, abamectin selection pressure was performed for ten generations of P. xylostella, and the sublethal concentrations (CL20) and susceptible lines of the resistance were determined. Then, these concentrations were applied to third instar larvae. In two generations it was evaluated the effect on the percentage of pupae formed, pupal weight, adult emergence, and the development times of each phase from egg to adult.


The resistance and application of sublethal concentrations have considerable costs in the biology and development of P. xylostella by increasing the percentage of pupation from one generation to another, and a greater weight of pupae and eggs per female/day. However, it presents a transgenerational effect by reducing oviposition in its generation; in terms of development time, it presented a harmful effect by prolonging it by more than seven days, which would generate a greater number of applications per cycle.

Rodríguez-Rodríguez, J. F., Cerna-Chávez, E., Ochoa-Fuentes, Y. M., Landeros-Flores, J., Guevara-Acevedo, L. P., & Cisneros-López, H. C. (2021). Sublethal effects and costs of resistance to abamectin in diamondback moth (Plutella xylostella) (Lepidoptera: Plutellidae). Revista Colombiana De Entomología, 47(2). https://doi.org/10.25100/socolen.v47i2.10657

ABBOTT, W. S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18 (2): 265-267. https://doi.org/10.1093/jee/18.2.265a

ARTHROPOD PESTICIDE RESISTANCE DATABASE. 2020. Plutella xylostella. APRD. Disponible en: https://www.pesticideresistance.org/display.php?page=species&arId=571 [fecha revisión: 20 abril 2020].

BANKS, J. E.; VARGAS, R. I.; ACKLEH, A. S.; STARK, J. D. 2017. Sublethal effects in pest management: a surrogate species perspective on fruit fly control. Insects 8 (3): 1-6. https://doi.org/10.3390/insects8030078

BLOCH, G.; HAZAN, E.; RAFAELI, A. 2013. Circadian rhythms and endocrine functions in adult insects. Journal of Insect Physiology 59 (1): 56-69. https://doi.org/10.1016/j.jinsphys.2012.10.012

BOWMAN, D. D. 2021. Georgis’ parasitology for veterinarians. 11th ed. Elsilver inc. St. Louis, Missouri. EE.UU. 287 p. https://books.google.com.mx/books?hl=es&lr=&id=2576DwAAQBAJ&oi=fnd&pg=PP1&ots=2aVHC9TK-_&sig=KqUq4GieK-i8p-PcgroNtNeDnmY&redir_esc=y#v=onepage&q&f=false

CALABRESE, E. J.; BALDWIN, L. A. 2001. Hormesis: a generalizable and unifying hypothesis. Critical Reviews in Toxicology 31(4-5): 353-424. https://doi.org/10.1080/20014091111730

CALABRESE, E. J.; BLAIN, R. 2005. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicology and applied pharmacology 202 (3): 289-301. https://doi.org/10.1016/j.taap.2004.06.023

CORDEIRO, E. M. G.; MOURA, I. L. T.; FADINI, M. A. M.; GUEDES, R. N. C. 2013. Beyond selectivity: are behavioral avoidance and hormesis likely causes of pyrethroid-induced outbreaks of the southern red mite Oligonychus ilicis? Chemosphere 93 (6): 1111-1116. https://doi.org/10.1016/j.chemosphere.2013.06.030

CUTLER, G. C. 2013. Insects, insecticides and hormesis: evidence and considerations for study. International Dose-Response Society 11 (2): 154-177. https://doi.org/10.2203/dose-response.12-008.Cutler

DE CASTRO, A. A.; CORRÊA, A. S.; LEGASPI, J. C.; GUEDES, R. N. C.; SERRÃO, J. E.; ZANUNCIO, J. C. 2013. Survival and behavior of insecticide-exposed predators Podisus nigrispinus and Supputius cincticeps (Heteroptera: Pentatomidae). Chemosphere 93 (6): 1043-1050. https://doi.org/10.1016/j.chemosphere.2013.05.075

DEECHER, D. C.; BREZNER, J.; TANENBAUM, S. W. 1990. Sublethal effects of avermectin and milbemycin on the gypsy moth (Lepidoptera: Lymantriidae). Journal of Economic Entomology

(3): 710-714. https://doi.org/10.1093/jee/83.3.710

FINNEY, D. J. 1971. Probit analysis. 3rd Edition Cambridge, University Press. New York, EE. UU. 333 p. https://doi.org/10.1002/jps.2600600940

FURLONG, M. J.; WRIGHT, D. J.; DOSDALL, L. M. 2013. Diamondback moth ecology and management: problems, progress, and prospects. Annual Review of Entomology 58 (1): 517-541. https://doi.org/10.1146/annurev-ento-120811-153605

GARCÍA SALAZAR, B.; HERNÁNDEZ MORENO, D.; SOLER RODRÍGUEZ, F.; PÉREZ-LÓPEZ, M. 2011. Empleo de ivermectina como parasiticida en ovino: posibles efectos tóxicos y repercusiones ambientale. Anales de veterinaria de Murcia 27: 23-32. https://doi.org/10.6018/j/160111

GRZYWACZ, D.; ROSSBACH, A.; RAUF, A., RUSSELL, D. A.; SRINIVASAN, R.; SHELTON, A. M. 2010. Current control methods for diamondback moth and other brassica insect pests and the prospects for improved management with lepidopteran-resistant Bt vegetable brassicas in Asia and Africa. Crop Protection 29 (1): 68-79. https://doi.org/10.1016/j.cropro.2009.08.009

GUEDES, R. N. C.; CUTLER, G. C. 2013. Insecticide- induced hormesis and arthropod pest management. Pest Management Science 70 (5): 690-697. https://doi.org/10.1002/ps.3669

GUEDES, N. M. P.; TOLLEDO, J.; CORRÊA, A. S.; GUEDES, R. N. C. 2010. Insecticide‐induced hormesis in an insecticide‐resistant strain of the maize weevil, Sitophilus zeamais. Journal of Applied Entomology 134 (2): 142-148. https://doi.org/10.1111/j.1439-0418.2009.01462.x

GUO, L.; DESNEUX, N.; SONODA, S.; LIANG, P.; HAN, P.; GAO, X-W. 2013. Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, Plutella xylostella L. Crop Protection 48: 29-34. https://doi.org/10.1016/j.cropro.2013.02.009

HAN, W.; ZHANG, S.; SHEN, F.; LIU, M.; REN, C.; GAO, X. 2012. Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest Management Science 68 (8): 1184-1190. https://doi.org/10.1002/ps.3282

IRAC (INSECTICIDE RESISTANCE ACTION COMMITTEE). 2019. Disponible en línea: https://irac-online.org/methods/plutella-xylostella-larvae/ (última consulta 8 de marzo 2019).

JAGER, T.; BARSI, A.; DUCROT, V. 2013. Hormesis on life-history traits: is there such thing as a free lunch? Ecotoxicology 22: 263-270. https://doi.org/10.1007/s10646-012-1022-0

LÓPEZ-MARTÍNEZ, G.; HAHN, D. A. 2012. Short-term anoxic conditioning hormesis boosts antioxidant defenses, lowers oxidative damage following irradiation and enhances male sexual performance in the Caribbean fruit fly, Anastrepha suspensa. Journal of Experimental Biology 215 (12): 2150-2161. https://doi.org/10.1242/jeb.065631

MATTSON, M. P.; CALABRESE, E. J. 2010. Hormesis: what it is and why it matters. pp. 1-13. En: Mattson, M. P.; Calabrese, E. J. (Eds.). Hormesis: A Revolution in Biology, Toxicology and

Medicine. 1st Edition. Springer. New York, EE. UU. 213 p. https://doi.org/10.1007/978-1-60761-495-1

MEGHANA, C.; JAYAPPA, J.; REDDY, N. A.; DEVAPPA, V.; SRIDHAR, V.; KATTEGOUDAR, J. 2018. Assessing susceptibility of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) population of different geographic region to selected newer insecticides. Journal of Entomology and Zoology Studies 6 (1): 320-327. http://www.entomoljournal.com/archives/?year=2018&vol=6&issue=1&part=E&ArticleId=2972

MEMARIZADEH, N.; GHADAMYARI, M.; ZAMANI, P.; SAJEDI, R. H. 2013. Resistance mechanisms to abamectin in Iranian populations of the two-spotted spider mite, Tetranychus urti-

cae Koch (Acari: Tetranychidae). Acarologia 53 (3): 235-246. https://doi.org/10.1051/acarologia/20132093

MOUSTAFA, M. A. M.; KÁKAI, Á.; AWAD, M.; FÓNAGY, A. 2016. Sublethal effects of spinosad and emamectin benzoate on larval development and reproductive activities of the cabbage

moth, Mamestra brassicae L. (Lepidoptera: Noctuidae). Crop Protection 90: 197-204. https://doi.org/10.1016/j.cropro.2016.09.004

PIIROINEN, S.; LYYTINEN, A.; LINDSTRÖM, L. 2013. Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest

insect. Evolutionary Applications 6 (2): 313-323. https://doi.org/10.1111/eva.12001

QU, Y.; XIAO, D.; LI, J.; CHEN, Z.; BIONDI, A.; DESNEUX, N.; GAO, X.; SONG, D. 2015. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines. Ecotoxicology 24 (3): 479-487. https://doi.org/10.1007/s10646-014-1396-2

R CORE TEAM. 2020. R: A language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

RAFAELI, A. 2011. Moth sex-pheromone production: Biosynthetic pathways, regulatory physiology, inhibitory processes and disruption. pp 115-143. In: Cauterruccio, L. (Ed.). Moths: types, ecological significance and control. 1st Edition. Nova Science Publisher, Inc. New York, EE. UU. 286 p.

SABER, M.; AHMADI, Z.; MAHDAVINIA, G. 2018. Sublethal effects of spirodiclofen, abamectin and pyridaben on life-history traits and life-table parameters of two-spotted spider mite,

Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology 75 (1): 55-67. https://doi.org/10.1007/s10493-018-0226-2

SÁENZ-DE-CABEZÓN, F. J.; PÉREZ-MORENO, I.; ZALOM, F. G.; MARCO, V. 2006. Effects of lufenuron on Lobesia botrana (Lepidoptera: Tortricidae) egg, larval, and adult stages. Journal of Economic Entomology 99 (2): 427-431. https://doi.org/10.1093/jee/99.2.427

SARAN, R. K.; ZIEGLER, M.; KUDLIE, S.; HARRISON, D.; LEVA, D. M.; SCHERER, C.; COFFELT, M. A. 2014. Behavioral effects and tunneling responses of eastern subterranean termites (Isoptera: Rhinotermitidae) exposed to chlorantraniliprole-treated soils. Journal of Economic Entomology 107(5): 1878-1889. https://doi.org/10.1603/EC11393

SAS Institute Inc. 2004. SAS/STAT ® 9.1 User’s Guide. Cary, NC: SAS Institute Inc. 3703-3797 pp. https://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/stat_ug_7313.pdf

WANG, G.; HUANG, X.; WEI, H.; FADAMIRO, H. Y. 2011. Sublethal effects of larval exposure to indoxacarb on reproductive activities of the diamondback moth, Plutella xylostella (L.) (Lep-

idoptera: Plutellidae). Pesticide Biochemistry and Physiology 101 (3): 227-231. https://doi.org/10.1016/j.pestbp.2011.09.010

WANG, R.; WU, Y. 2014. Dominant fitness costs of abamectin resistance in Plutella xylostella. Pest Management Science 70 (12): 1872-1876. https://doi.org/10.1002/ps.3741

WANG, X.; WU, Y. 2012. High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella. Journal of Economic Entomology 105 (3): 1019-1023. https://doi.org/10.1603/EC12059

XU, Z.; CAO, G-C.; DONG, S-L. 2010. Changes of sex pheromone communication systems associated with tebufenozide and abamectin resistance in diamondback moth, Plutella xylostella (L.). Journal of Chemical Ecology 36: 526-534. https://doi.org/10.1007/s10886-010-9785-3

YIN, X-H.; WU, Q-J.; LI, X-F.; ZHANG, Y-J.; XU, B-Y. 2008. Sublethal effects of spinosad on Plutella xylostella (Lepidoptera: Yponomeutidae). Crop Protection 27 (10): 1385-1391. https://doi.org/10.1016/j.cropro.2008.05.008

ZHOU, X-M.; WU, Q-J.; ZHANG, Y-J.; BAI, L-Y.; HUANG, X-Y. 2010. Effects of abamectin selection on the genetic differentiation within Plutella xylostella (Lepidoptera: Plutellidae) based on amplified fragment length polymorphism. Insect Science 17 (4): 353-360. https://doi.org/10.1111/j.1744-7917.2009.01307.x

ZIBAEE, I.; ESMAEILY, M. 2017. Effect of sublethal doses of abamectin on demographic traits of tomato leafminer Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae). Journal of Plant Protection Research 57 (3): 256-267. https://doi.org/10.1515/jppr-2017-0036