Distribución espacial del daño de Heilipus lauri (Coleoptera: Curculionidae) y Stenoma catenifer (Lepidoptera: Elachistidae) en aguacate Persea americana cv. Hass
Contenido principal del artículo
Determinar la distribución espacial de poblaciones de Heilipus lauri y Stenoma catenifer, insectos de importancia económica y cuarentenaria en aguacate, constituye una información útil y de aplicación en el diseño e implementación de programas de monitoreo y manejo integrado de plagas. La distribución espacial agregada es considerada uno de los patrones más comunes en la naturaleza, no obstante, no ha sido documentada para estas especies de insectos plaga. Se propone a través de métodos de estadística espacial el análisis de datos provenientes de monitoreos periódicos donde se registró el número de frutos con daño ocasionado por los dos insectos plaga. El estudio se realizó entre el 2019-2020 en cuatro huertos comerciales de aguacate cv. Hass en el departamento de Cauca, Colombia. Se estableció un diseño de muestreo basado en el reconocimiento del daño sobre árboles previamente geoposicionados. La distribución espacial se determinó a través de la Ley de poder de Taylor y la función K de Ripley. El coeficiente de agregación de Taylor (b) fue de 1,47 y 1,22 para H. lauri y S. catenifer, respectivamente, lo cual indicó agregación. La función K de Ripley, identificó puntos de agregación de frutos con daño (FCD) en un rango de 5-35 metros de radio, siendo los puntos de agregación consistentes en los dos ciclos productivos. Los registros de los frutos afectados se mapearon, identificando los sitios de mayor agregación sobre los cuales se definen e implementan las estrategias de manejo de las plagas cuarentenarias en sitios específicos del cultivo que señalan la ubicación espacial donde se concentra el daño y poblaciones de H. lauri y S. catenifer.
- agricultura específica por sitio
- estadística espacial
- interpolación
- patrones puntuales
- plagas de importancia cuarentenaria
Alcaraz, M. L., Thorp, T. G., & Hormaza, J. I. (2013). Phenological growth stages of avocado (Persea americana) according to the BBCH scale. Scientia Horticulturae, 164, 434-439. https://doi.org/10.1016/j.scienta.2013.09.051 DOI: https://doi.org/10.1016/j.scienta.2013.09.051
Baddeley, A. (2008). Analysing spatial point patterns in R. Version 4.1, 232.
Baddeley, A., Rubak, E., & Turner, R. (2015). Spatial Point Patterns. En Spatial Point Patterns. Taylor & Francis Group. https://doi.org/10.1201/b19708 DOI: https://doi.org/10.1201/b19708
Bakry, M. M., & Shakal, S. Y. (2020). Population size and spatial distribution pattern of Schizaphis graminum (Hemiptera: Aphididae) on some wheat cultivars and lines. Acta Entomology and Zoology, 1(2), 1-9. https://doi.org/10.33545/27080013.2020.v1.i2a.11 DOI: https://doi.org/10.33545/27080013.2020.v1.i2a.11
Caicedo R., L., Devia, E. V., Bacca, T., & Carabali, A. (2010). Daños ocasionados por el perforador del aguacate Heilipus lauri Boheman (Coleoptera: Curculionidae) en Tolima (Colombia). Corpoica Ciencia y Tecnología Agropecuaria, 11(2), 129-135. https://doi.org/10.21930/rcta.vol11_num2_art:203 DOI: https://doi.org/10.21930/rcta.vol11_num2_art:203
Carabali-Muñoz, A. (2020). Barrenador grande de la semilla de aguacate Heilipus lauri. En Actualización tecnológica y buenas prácticas agrícolas (BPA) en el cultivo de aguacate (pp. 489-496). Editorial Agrosavia . https://doi.org/10.21930/agrosavia.manual.7403831
Carabalí Muñoz, A., Caicedo Vallejo, A. M., & Holguín, C. M. (2021). Guía para el reconocimiento y manejo de las principales plagas de aguacate cv. Hass en Colombia. En Guía para el reconocimiento y manejo de las principales plagas de aguacate cv. Hass en Colombia (Número Noviembre). https://doi.org/10.21930/agrosavia.nbook.7404913 DOI: https://doi.org/10.21930/agrosavia.nbook.7404913
Carabalí-Muñoz, A., Montes-Prado, M., Canacuán N., D. E., Cuellar-Palacios, C. M., Zapata, J. C., & Rosero, R. A. (2023). Manejo integrado de plagas de importancia económica y cuarentenaria del cultivo de aguacate Persea americana (Lauraceae): Stenoma catenifer (Lepidoptera: Depressariidae), Heilipus lauri y Heilipus trifasciatus (Coleoptera: Curculionidae). Editorial Agrosavia. https://doi.org/10.21930/agrosavia.manual.7406689 DOI: https://doi.org/10.21930/agrosavia.manual.7406689
Castrignano, A., Boccaccio, L., Cohen, Y., Nestel, D., Kounatidis, I., Papadopoulos, N. T., Benedetto, D. De, & Mavragani-Tsipidou, P. (2012). Spatio-temporal population dynamics and area-wide delineation of Bactrocera oleae monitoring zones using multi-variate geostatistics. Precision Agriculture, 13, 421-441. https://doi.org/10.1007/s11119-012-9259-4 DOI: https://doi.org/10.1007/s11119-012-9259-4
Dawar, P., Vishwakarma, D., Singh, P., Rien, S. P., & Singh, U. C. (2022). Seasonal incidence of insect pests and natural enemies of clusterbean associated with meteorological parameters. The Pharma Innovation International Journal, 11(2), 157-161. https://www.thepharmajournal.com/special-issue?year=2022&vol=11&issue=2S&ArticleId=10510
Deh-pahni, S., Vahedi, H., & Darbemamieh, M. (2020). Spatial distribution of grape leafhopper, Arboridia kermanshah (Hemiptera: Cicadellidae) immature stages, in vineyards of Kermanshah County. Journal of Applied Research in Plant Protection. 9(4), 49-60. https://doi.org/10.22034/ARPP.2021.12239
del Carmen Velázquez-Martínez, G., González-Hernández, H., Equihua-Martínez, A., Refugio Lomeli-Flores, J., Rojas, J. C., & Lopez-Collado, J. (2022). Population dynamics of Stenoma catenifer Walsingham (Lepidoptera: Depressariidae) on Hass avocado orchards in México. Journal of Asia-Pacific Entomology, 25(1). https://doi.org/10.1016/j.aspen.2021.101866 DOI: https://doi.org/10.1016/j.aspen.2021.101866
Diaz Grisales, V., Caicedo Vallejo, A. M., & Carabalí Muñoz, A. (2017). Ciclo de vida y descripción morfológica de Heilipus lauri Boheman (Coleoptera: Curculionidae) en Colombia. Acta Zoológica Mexicana (N.S.), 33(2), 231-242. https://doi.org/10.21829/azm.2017.3321063 DOI: https://doi.org/10.21829/azm.2017.3321063
Diggle, P. (1985). A Kernel Method for Smoothing Point Process Data. 34(2), 138-147. https://doi.org/10.2307/2347366 DOI: https://doi.org/10.2307/2347366
Dionisio, L. F. S., Lima, A. C. S., de Morais, E. G. F., Farias, P. R. S., Correia, R. G., Martins, W. B. R., & dos Santos, A. V. F. (2020). Spatial distribution of Rhynchophorus palmarum L. (Coleoptera: Curculionidae) in oil palm, Roraima State, Brazil. Revista Brasileira de Ciencias Agrarias, 15(1). https://doi.org/10.5039/agraria.v15i1a5683 DOI: https://doi.org/10.5039/agraria.v15i1a5683
Duarte, F., Calvo, M., V., Borges, A., & Scatoni, I. B. (2015). Geostatistics applied to the study of the spatial distribution of insects and its use in integrated pest management. Revista Agronómica del Noroeste Argentino, 35(2), 9-20. https://www.scielo.org.ar/scielo.php?script=sci_abstract&pid=S2314-369X2015000200001&lng=es&nrm=iso&tlng=en
Fatemi, S. A., Mohammadi, D., & Kary, N. E. (2023). Using Nearest Neighbor, Ripley’s K Function and Kriging methods to identify distribution pattern of tomato leafminer moth, Tuta absoluta in greenhouse conditions. Journal of Applied Research in Plant Protection, 12(2), 143-152. https://dx.doi.org/10.22034/arpp.2022.15651
Fortin, M.J., Dale, M. R., & Hoef, J. (2002). Spatial analysis in ecology. Journal of Health Care Marketing, 7(4), 82-85.
Gilbert, N., & Raworth, D. A. (1996). FORUM: INSECTS AND TEMPERATURE—A GENERAL THEORY. The Canadian Entomologist, 128(1), 1-13. https://doi.org/10.4039/ENT1281-1 DOI: https://doi.org/10.4039/Ent1281-1
Guimapi, R. A., Mohamed, S. A., Ekesi, S., Biber-Freudenberger, L., Borgemeister, C., & Tonnang, H. E. Z. (2020). Optimizing spatial positioning of traps in the context of integrated pest management. Ecological Complexity, 41, 100808. https://doi.org/10.1016/j.ecocom.2019.100808 DOI: https://doi.org/10.1016/j.ecocom.2019.100808
Hahn, N. G., Rodriguez-Saona, C., & Hamilton, G. C. (2017). Characterizing the spatial distribution of brown marmorated stink bug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), populations in peach orchards. PLoS ONE, 12(3), e0170889. https://doi.org/10.1371/journal.pone.0170889 DOI: https://doi.org/10.1371/journal.pone.0170889
Hassell, M. P., Comins, H. N., & Mayt, R. M. (1991). Spatial structure and chaos in insect population dynamics. Nature, 353, 255-258. https://doi.org/10.1038/353255a0 DOI: https://doi.org/10.1038/353255a0
Hurtado-Fernández, E., Fernández-Gutiérrez, A., & Carrasco-Pancorbo, A. (2018). Avocado fruit— Persea americana. Exotic Fruits, 37-48. https://doi.org/10.1016/b978-0-12-803138-4.00001-0 DOI: https://doi.org/10.1016/B978-0-12-803138-4.00001-0
ICA. (2016). Resolucion N° 00001507. https://www.ica.gov.co/getattachment/81591168-ac45-478a-b84b-f054d4e5829b/2016r1507.aspx
Jamshidi, A., Vahedi, H. A., Zamani, A. A., & Farhadi Bansooleh, B. (2022). Bioecology and spatial distribution of the pistachio leafhopper, Idiocerus stali Fieber (Hemiptera: Cicadellidae) in Pistachio Orchards. Journal of Agricultural Science and Technology, 24(1), 107-122. https://jast.modares.ac.ir/browse.php?a_code=A-10-55564-1&slc_lang=en&sid=23
Jiménez, F. B. G., & Corredera, S. R. (2015). Estimación de pautas de asociación y patrones de distribución de edificaciones aisladas en espacios rurales mediante SIG y técnicas basadas en procesos puntuales.
Lefort, V., Grégoire, D., Rojas Solano, L. B., Grassl, P., & Pijaudier-Cabot, G. (2013, August). Analyse spatiale du processus de localisation à l ’ aide des fonctions de Ripley. CFM 2013 - 21ème Congrès Français de Mécanique, Bordeaux, France.
Manrique, B. M., Carabalí, A., Kondo, T., & Bacca, T. (2014). Biología del pasador del fruto del Aguacate Stenoma catenifer Walsingham (Lepidoptera: Elachistidae) y búsqueda de sus posibles enemigos naturales. Boletin Cientifico del Centro de Museos, 18(2), 79-92.
Martins, J. C., Picanço, M. C., Silva, R. S., Gonring, A. H. R., Galdino, T. V. S., & Guedes, R. N. C. (2018). Assessing the spatial distribution of Tuta absoluta (Lepidoptera: Gelechiidae) eggs in open-field tomato cultivation through geostatistical analysis. Pest Management Science, 74(1), 30-36. https://doi.org/10.1002/ps.4664 DOI: https://doi.org/10.1002/ps.4664
Mavunda, C. A., Kanda, M., Folega, F., Maza-Esso Bawa, D., Dourma, M., & Akpagana, K. (2023). Ecological characterization of habitats of three insect species prized by populations in Kinshasa (DR. Congo). Baltica Journa, 36(12). 3tb2R https://doi.org/10.59879/3tb2r
Ministerio de Agricultura y Desarrollo Rural. (2021). Cadena productiva Aguacate. En Informe. https://sioc.minagricultura.gov.co/Aguacate/Documentos/2021-03-31 Cifras Sectoriales.pdf
Arias, F., Montoya, C., & Velásquez, O. (2018). Dinámica del mercado mundial de aguacate. Revista virtual Universidad Católica del Norte, 55, 22-35. https://revistavirtual.ucn.edu.co/index.php/RevistaUCN/article/view/994/1442 DOI: https://doi.org/10.35575/rvucn.n55a2
Mosedale, J. R., Eyre, D., Korycinska, A., Everatt, M., Grant, S., Trew, B., Kaye, N., Hemming, D., & Maclean, I. M. D. (2024). Mechanistic microclimate models and plant pest risk modelling. Journal of Pest Science, 97, 1749-1766. https://doi.org/10.1007/s10340-024-01777-y DOI: https://doi.org/10.1007/s10340-024-01777-y
Moral, F. J. (2004). Aplicación de la geoestadística en las ciencias ambientales. Ecosistemas, XIII(1), 0. https://doi.org/10.7818/582
Nestel, D., Carvalho, J., & Nemny-Lavy, E. (2004). The Spatial Dimension in the Ecology of Insect Pests and Its Relevance to Pest Management . In: Horowitz, A.R., Ishaaya, I. (eds) Insect Pest Management (45-63). Springer, Berlin, Heidelberg. . https://doi.org/10.1007/978-3-662-07913-3_3 DOI: https://doi.org/10.1007/978-3-662-07913-3_3
Pinchao, E. C., & Carabali Muñoz, A. (2019). Mapping the spatial distribution of Conotrachelus psidii (Coleoptera: Curculionidae): factors associated with the aggregation of damage. Neotropical Entomology, 48(4), 678-691. https://doi.org/10.1007/s13744-018-00669-y DOI: https://doi.org/10.1007/s13744-018-00669-y
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8(2), 224-239. https://doi.org/10.1111/j.1461-0248.2004.00701.x DOI: https://doi.org/10.1111/j.1461-0248.2004.00701.x
Ripley, B. D. (1976). The second-order analysis of stationary point processes. Journal of Applied Probability, 13(2), 255-266. https://doi.org/10.2307/3212829 DOI: https://doi.org/10.2307/3212829
Ripley, B. D. (1981). Mapped point patterns. Spatial Statistics, 144, 190. DOI: https://doi.org/10.1002/0471725218.ch8
Roslin, T., & Kotze, D. J. (2005). Insects and plants in space Published. Annales Zoologici Fennici, 42(4), 291-294. https://www.jstor.org/stable/23735877
Rozas, V., & Camarero, J. J. (2005). Spatial analysis techniques applied in forest ecology: point pattern analyses. Forest Systems, 14(1), 79-97. https://doi.org/10.5424/SRF/2005141-00875 DOI: https://doi.org/10.5424/srf/2005141-00875
Sandoval, A., Forero, F., & García, J. (2010). Postcosecha y transformación de aguacate: Agroindustria rural innovadora. Corpoica. http://hdl.handle.net/20.500.12324/13436
Schowalter, T. D. (2016). Insect Ecology: An Ecosystem Approach: Fourth Edition. En Insect Ecology: An Ecosystem Approach: Fourth Edition. Academic Press.
Taylor, L. R. (1961). Aggregation, variance and the mean. Nature, 189, 732-735. https://doi.org/10.1038/189732a0 DOI: https://doi.org/10.1038/189732a0
Taylor, R. A. J. (2019). Taylor’s Power Law. En Angewandte Chemie International Edition (951-952). Elsevier.
Teixeira Roth, V., & Sánchez Infantas, E. (2006). Patrones poblacionales de las principales especies herbáceas en la Reserva Nacional de Lachay. Ecología Aplicada, 5(1-2), 23. https://doi.org/10.21704/REA.V5I1-2.313 DOI: https://doi.org/10.21704/rea.v5i1-2.313
Vacari, A. M., Damato, F., Dami, B. G., De Lima, M. L. F., Lima, L. S. M. U., Figueiredo, G. P., Cabral, E. D. O., & Rodriguez-Saona, C. (2021). Within-canopy distribution of Stenoma catenifer (Lepidoptera: Elachistidae) infestation in avocado orchards. Journal of Insect Science, 21(5). https://doi.org/10.1093/jisesa/ieab055 DOI: https://doi.org/10.1093/jisesa/ieab055
Vinatier, F., Tixier, P., Duyck, P. F., & Lescourret, F. (2011). Factors and mechanisms explaining spatial heterogeneity: A review of methods for insect populations. Methods in Ecology and Evolution, 2(1), 11-22. https://doi.org/10.1111/j.2041-210X.2010.00059.x DOI: https://doi.org/10.1111/j.2041-210X.2010.00059.x
Walter, J.-M. N. (2006). La méthode de Ripley pour l’analyse des structures spatiales ponctuelles en écologie. Université Louis Pasteur, Institut de Botanique. http://equinoxe.u-strasbg.fr/sgc/equipe/pdf/ripley-01.pdf
Wang, P., Li, F., Yang, Q., & Wang, F. (2019). Point pattern analysis of the spatial distribution of ragweed populations in Jiangxi Province based on Ripley’s K function and Taylor’s power law. Journal of Plant Protection, 46(1), 130-135.
Ward, S. F., Fei, S., & Liebhold, A. M. (2019). Spatial patterns of discovery points and invasion hotspots of non-native forest pests. Global Ecology and Biogeography, 28(12), 1749-1762. https://doi.org/10.1111/geb.12988 DOI: https://doi.org/10.1111/geb.12988
Descargas
Aceptado 2024-11-05
Publicado 2025-06-16

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores conservan los derechos patrimoniales sobre su trabajo y son responsables de las ideas emitidas en ellos. Una vez un manuscrito sea aprobado para publicar se solicita a los autores una licencia de publicación por el término de la protección legal, para todos los territorios que permite el uso, difusión y divulgación de los mismos.