Efecto de los herbicidas sobre la emergencia de Sitophilus zeamais (Coleoptera: Curculionidae) en maíz Bt transgénico
Contenido principal del artículo
Los organismos genéticamente modificados (OGM) están muy extendidos en Brasil, especialmente los relacionados con la resistencia a herbicidas e insectos. El objetivo de este trabajo fue evaluar el efecto de herbicidas sobre la emergencia del gorgojo del maíz, Sitophilus zeamais (Coleoptera: Curculionidae), en diferentes genotipos de maíz. El diseño experimental fue en bloques al azar, con cuatro repeticiones, utilizando un arreglo factorial de 3 × 5. Se utilizaron genotipos de maíz transgénico Herculex® (TC507) y PowerCore® (MON 89034 × TC1507 × NK603) y un Isohíbrido (no transgénico). Los herbicidas fueron: Atrazina, Atrazina + Nicosulfuron, Glufosinato de Amonio, Nicosulfuron y tratamiento control sin aplicación de herbicida. La emergencia de S. zeamais se realizó en seis evaluaciones, durante 100 días, en parcelas con 300 gramos de granos de maíz. Isohíbrido fue el más atractivo para S. zeamais cuando no hubo aplicación de herbicidas. La aplicación de glufosinato de amonio aumentó la preferencia del S. zeamais por el genotipo Herculex® y Nicosulfuron por PowerCore®. La inserción de un gen exógeno y la aplicación de herbicidas en las plantas de maíz pueden alterar los componentes de la interacción insecto-planta, cambiando la atractividad de S. zeamais.
- Antixenosis
- cultivo transgénico
- gorgojo del maíz
- plagas de almacenamiento
- resistencia vegetal
Abass, A. B., Ndunguru, G., Mamiro, P., Alenkhe, B., Mlingi, N., & Bekunda, M. (2014). Post-harvest food losses in a maize-based farming system of semi-arid savannah area of Tanzania. Journal of Stored Products Research, 57, 49-57. https://doi.org/10.1016/j.jspr.2013.12.004
Brown, S., & Lee, R. (2002). Effect of planting date, variety and degree of ear maturation on the colonization of field corn by maize weevils (Coleoptera: Curculionidae). Entomological Science, 37(2), 137-142. https://doi.org/10.18474/0749-8004-37.2.137
Bruce, T. J., Wadhams, L. J., & Woodcock, C. M. (2005). Insect host location: a volatile situation. Trends in Plant Science, 10(6), 269-274. https://doi.org/10.1016/j.tplants.2005.04.003
Caneppele, M. A. B., Caneppele, C., Lázzari, F. A., & Lázzari, S. M. N. (2003). Correlation between the infestation level of Sitophilus zeamais Motschulsky, 1855 (Coleoptera, Curculionidae) and the quality factors of stored corn, Zea mays L. (Poaceae). Revista Brasileira de Entomologia, 47(4), 625-630. https://doi.org/10.1590/S0085-56262003000400015
Carvalho, G. A., Vieira, J. L., Haro, M. M., Corrêa, A. S., Ribon, A. O. B., Oliveira, L. O., & Guedes, R. N. C. (2014). Pleiotropic impact of endosymbiont load and co-occurrence in the maize weevil Sitophilus zeamais. PLoS One, 9(10), e111396. https://doi.org/10.1371/journal.pone.0111396
Cavalieri, S. D., Oliveira Junior, R. S., Constantin, J., Biffe, D. F., Rios, F. A., & Franchini, L. H. M. (2008). Tolerance of corn hybrids to nicosulfuron. Planta Daninha, 26(1), 203-214. https://doi.org/10.1590/S0100-83582008000100021
Cutulle, M. A., Armel, G. R., Kopsell, D. A., Wilson, H. P., Brosnan, J. T., Vargas, J. J., Hines, T. E., & Koepke-Hill, R. M. (2018). Several pesticides influence the nutritional content of sweet corn. Journal of Agricultural and Food Chemistry, 66(12), 3086-3092. https://doi.org/10.1021/acs.jafc.7b05885
De Groote, H., De Groote, B., Bruce, A. Y., Marangu, C., & Tefera, T. (2017). Maize storage insects (Sitophilus zeamais and Prostephanus truncatus) prefer to feed on smaller maize grains and grains with color, especially green. Journal of Stored Products Research, 71, 72-80. https://doi.org/10.1016/j.jspr.2017.01.005
De Menezes, C. W. G., & Soares, M. A. (2016). Impacts of the control of weeds and herbicides applied to natural enemies. Revista Brasileira de Herbicidas, 15(1), 2-13. https://doi.org/10.7824/rbh.v1i1.407
De Souza, M. W. R., Ferreira, E. A., Dos Santos, J. B., Soares, M. A., Castro, B. M. C., & Zanuncio, J. C. (2020). Fluorescence of chlorophyll a in transgenic maize with herbicide application and attacked by Spodoptera frugiperda (Lepidoptera: Noctuidae). Phytoparasitica, 48(1), 567-573. https://doi.org/10.1007/s12600-020-00816-5
Demissie, G., Tilahun, B., Dida, M., Teklewold, A., & Wegary, D. (2015). Evaluation of quality protein maize inbred lines for resistance to maize weevil Sitophilus zeamais (Coleoptera: Curculionidae) and other important agronomic traits. Euphytica, 205(1), 137-150. https://doi.org/10.1007/s10681-015-1412-5
Dobie, P. (1974). The laboratory assessment of the inherent susceptibility of maize varieties to post-harvest infestation by Sitophilus zeamais Motsch. (Coleoptera, Curculionidae). Journal of Stored Products Research, 10(3-4), 183-197. https://doi.org/10.1016/0022-474X(74)90006-X
Dyer, W. E. (2018). Stress‐induced evolution of herbicide resistance and related pleiotropic effects. Pest Management Science, 74(8), 1759-1768. https://doi.org/10.1002/ps.5043
Ferreira, D. F. (2014). SISVAR (Versão 5.6) [Software]. Lavras: UFLA/DEX. Intel. https://des.ufla.br/~danielff/programas/sisvar.html
Fonne-Pfister, R., Gaudin, J., Kreuz, K., Ramsteiner, K., & Ebert, E. (1990). Hydroxylation of primisulfuron by an inducible cytochrome P450-dependent monooxygenase system from maize. Pesticide Biochemistry and Physiology, 37(2), 165-173. https://doi.org/10.1016/0048-3575(90)90122-I
Frazão, C. A. V., Silva, P. R. R., Almeida, W. A., Pontual, E. V., Cruz, G. S., Napoleão, T. H., & França, S. M. (2018). Resistance of maize cultivars to Sitophilus zeamais (Coleoptera: Curculionidae). Arquivos do Instituto Biológico, 85, e0552017. https://doi.org/10.1590/1808-1657000552017
Ghanizadeh, H., & Harrington, K. C. (2017). Perspectives on non-target site mechanisms of herbicide resistance in weedy plant species using evolutionary physiology. AoB Plants, 9(5), plx035. https://doi.org/10.1093/aobpla/plx035
Herman, R. A., & Price, W. D. (2013). Unintended Compositional Changes in Genetically Modified (GM) Crops: 20 Years of Research. Journal of Agricultural and Food Chemistry, 61(48), 11695-11701. https://doi.org/10.1021/jf400135r
ISAAA. (2018). Global Status of Commercialized Biotech/GM Crops in 2018: Biotech crops continue to help meet the challenges of increased population and climate change. ISAAA Brief No. 54. ISAAA: Ithaca,. https://www.isaaa.org/resources/publications/briefs/54/
Jiang, Q., Niu, F., Sun, X., Hu, Z., Li, X., Ma, Y., & Zhang, H. (2017). RNA-seq analysis of unintended effects in transgenic wheat overexpressing the transcription factor GmDREB1. The Crop Journal, 5(3), 207-218. https://doi.org/10.1016/j.cj.2016.12.001
Krenchinski, F. H., Cesco, V. J. S., Castro, E. B., Carbonari, C. A., & Velini., E. D. (2019). Ammonium-Glufosinate associated with post-emergence herbicides in corn with the cp4-epsps and Pat Genes. Planta Daninha, 37, e019184453. https://doi.org/10.1590/s0100-83582019370100042
Ladics, G. S., Bartholomaeus, A., Bregitzer, P., Doerrer, N. G., Gray, A., Holzhauser, T., Jordan, M., Keese, P., Kok, E., Macdonald, P., Parrott, W., Privalle, L., Raybould, A., Rhee, S. Y., Rice, E., Romeis, J., Vaughn, J., Wal, J. M., & Glenn, K. (2015). Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Research, 24, 587-603. https://doi.org/10.1007/s11248-015-9867-7
Li, X., Ding, C., Wang, X., & Liu, B. (2015). Comparison of the physiological characteristics of transgenic insect-resistant cotton and conventional lines. Scientific Reports, 5, 8739. https://doi.org/10.1038/srep08739
Ni, X., Xu, W., Blanco, M. H., & Wilson, J. P. (2012). Evaluation of corn germplasm lines for multiple ear-colonizing insect and disease resistance. Journal of Economic Entomology, 105(4), 1457-1464. https://doi.org/10.1603/EC12115
Pereira, J. L., Antunes, S. C., Castro, B. B., Marques, C. R., Gonçalves, A. M., Gonçalves, F., & Pereira, R. (2009). Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology, 18(4), 455-463. https://doi.org/10.1007/s10646-009-0300-y
Ranum P., Peña-Rosas, J. P., & Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 105-112. https://doi.org/10.1111/nyas.12396
Ren, Y., Wang, T., Peng, Y., Xia, B., & Qu, L. J. (2009). Distinguishing transgenic from non-transgenic Arabidopsis plants by (1)H NMR-based metabolic fingerprinting. Journal of Genetics and Genomics, 36(10), 621-628. https://doi.org/10.1016/S1673-8527(08)60154-X
Ribeiro, A. C., Guimarães, P. T. G., & Alvarez V, H. V. (1999). Recomendations for use of correctives and fertilizers in Minas Gerais = Recomendações para uso de corretivos e fertilizantes em Minas Gerais. 5ª Aproximação. Viçosa, MG, Comissão de Fertilidade do Solo do Estado de Minas Gerais – CFSEMG.
Schuler, T. H., Potting, R. P., Denholm, I., & Poppy, G. M. (1999). Parasitoid behaviour and Bt plants. Nature, 400(6747), 825-826. https://doi.org/10.1038/23605
SISBAR. (2015). https://des.ufla.br/~danielff/programas/sisvar.html
Smith, K., Evans, D. A., & El-Hiti, G. A. (2008). Role of modern chemistry in sustainable arable crop protection. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 363(1491), 623-637. https://doi.org/10.1098/rstb.2007.2174
Strauch, E., Wohlleben, W., & Pühler, A. (1988). Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Streptomyces lividans and Escherichia coli. Gene, 63(1), 65-74. https://doi.org/10.1016/0378-1119(88)90546-X
Toshova, T. B., Velchev, D. I., Subchev, M. A., Subchev, M. A., Tóth, M., Vuts, J., Pickett, J. A., & Dewhirst, S. (2010). Electrophysiological responses and field attraction of the grey corn weevil, Tanymecus (Episomecus) dilaticollis Gyllenhal (Coleoptera: Curculionidae) to synthetic plant volatiles. Chemoecology, 20, 199-206. https://doi.org/10.1007/s00049-010-0051-5
Xin, Z., Yu, Z., Erb, M., Turlings, T. C., Wang, B., Qi, J., Liu, S., & Lou, Y. (2012). The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp. The New Phytologist, 194(2), 498-510. https://doi.org/10.1111/j.1469-8137.2012.04057.x
Zanuncio, J. C., Lacerda, M. C., Alcántara-de La Cruz, R., Brügger, B. P., Pereira, A. I., Wilcken, C. F., Serrão, J. E., & Sediyama, C. S. (2018). Glyphosate-based herbicides toxicity on life history parameters of zoophytophagous Podisus nigrispinus (Heteroptera: Pentatomidae). Ecotoxicology and Environmental Safety, 147, 245-250. https://doi.org/10.1016/j.ecoenv.2017.08.055
Descargas
Aceptado 2023-04-02
Publicado 2023-01-03

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores conservan los derechos patrimoniales sobre su trabajo y son responsables de las ideas emitidas en ellos. Una vez un manuscrito sea aprobado para publicar se solicita a los autores una licencia de publicación por el término de la protección legal, para todos los territorios que permite el uso, difusión y divulgación de los mismos.