Main Article Content

Authors

Xeric sites with scleromorphic vegetation appear to have higher gall-inducing arthropod richness as revealed in studies of local faunas across the world, and the harsh environment hypothesis (HEH) was proposed to explain this. However, plant richness also seems to influence galling arthropod richness positively, which appears paradoxical on a biogeographical scale. To test the HEH in southern Brazil, a sampling regime distinct from the usual local survey was adopted: eight transects were sampled during 90 min counting all galls; this was repeated three times over one year for the same transects. Xeric espinilho savannah (five transects) and mesic Uruguay River riparian forests (three transects) in subtropical Brazil were compared. Fifty-nine gall morphotypes on 15 host families were recognized out of 12,355 individual galls. Riparian forests were richer (individual-based rarefaction) and had higher gall equitabilities (bootstrapped 95% CIs); this contradicted the HEH. The plant richness hypothesis was generally supported because forests were recorded as richer in both plants and host plants. Vegetation types had different galling and host plant compositions; the latter may drive the former. Species pools appear distinct among environments, even adjacent ones, given the low similarities found. This further negates the ecological process of preference for xeric sites proposed in the HEH.

DE S. MENDONÇA, JR., M. (2011). Galling arthropod diversity in the subtropical neotropics: Espinilho savannah and riparian forests compared. Revista Colombiana De Entomología, 37(1), 111–116. https://doi.org/10.25100/socolen.v37i1.9053

BLANCHE, K.R. 2000. Diversity of insect-induced galls along a temperature-rainfallgradient in the tropical savannah region of the Northern Territory, Australia. Austral Ecology 25: 311-318.

BLANCHE, K.R.; LUDWIG, J.A. 2001. Species richness of gallinducing insects and host plants along an altitudinal gradient in Big Bend National Park, Texas. American Midland Naturalist 145: 219-232.

CLARKE, K.R.; GREEN, R.H. 1998. Statistical design and analysis for a “biological effects” study. Marine Ecology Progress Series

: 213-226.

COLWELL, R.K. 2005. EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.0 [Internet].. Storrs (CT): University of Connecticut; [cited 2009 Jun 10] Available from: http://purl.oclc.org/estimates/

CUEVAS-REYES, P.; SIEBE, C,; MARTÍNEZ-RAMOS, M.; OYAMA, K. 2003. Species richness of gall-forming insects in tropical rain forest: correlations with plant diversity and soil fertility. Biodiversity & Conservation 12: 411-422.

CUEVAS-REYES, P.; QUESADA, M.; HANSON, P.; DIRZO, R.; OYAMA, K. 2004. Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life-forms, host plant age and plant density. Journal of Ecology 92: 707-716.

DALBEM, R.V.; MENDONÇA, M. DE S., Jr. 2006. Diversity of galling arthropods and host plants in subtropical forests of Porto Alegre, southern Brazil. Neotropical Entomology 35: 616-624.

ESPÍRITO-SANTO, M.M.; FERNANDES, G.W. 2007. How many species of gall-inducing insects are there on Earth, and where are they? Annals of the Entomological Society of America 100: 95-99.

FERNANDES, G.W.; PRICE, P.W. 1988. Biogeographical gradients in gall-inducing species richness. Tests of hypotheses. Oecologia 76: 161-167.

FERNANDES, G.W.; PRICE, P.W. 1991. Comparison of tropical and temperate gall-inducing species richness: the roles of environmental harshness and plant nutrient status. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-Anima Interactions: Evolutionary Ecology in Tropical and Temperate Regions. New York (NY); John Wiley and Sons, p. 91-115.

FERNANDES, G.W.; PRICE, P.W. 1992. The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia 90: 14-20.

FERNANDES, G.W.; JULIÃO, G.R.,; ARAUJO, R.C.; ARAUJO, S.C.; LOMBARDI, J.A.; NEGREIROS, D.; CARNEIRO, M.A.2001. Distribution and morphology of insect galls of the Rio Doce Valley, Brazil. Naturalia 26: 211-244.

FERNANDES, G.W.; VARELA, O.; BUCHER, E.H.; CHANI, J.M.; ECHEVARRIA, A.L.; ESPÍRITO-SANTO, M.M.; LIMA, J.; NEGREIROS, D.; TOLEDO, C.S. 2002. Gall-forming insects on woody and herbaceous plant species of the semi-arid chaco forest, Argentina. Lundiana 3: 20-30.

GALVANI, F.R.; BAPTISTA, L.R. DE M. 2003. Flora do Parque Estadual do Espinilho – Barra do Quaraí/RS. Revista da Faculdade Zootécnica Veterinária e Agronômica de Uruguaiana 10: 148-168.

GONÇALVES-ALVIM, S.J.; FERNANDES, G.W. 2001a. Biodiversity of gall-inducing insects: historical, community and habitat effects in four neotropical savannas. Biodiversity & Conservation 10: 79-98.

GONÇALVES-ALVIM, S.J.; FERNANDES, G.W. 2001b. Comunidade de insetos galhadores (Insecta) em diferentes fisionomias do cerrado em Minas Gerais, Brasil. Revista Brasileira de Zoologia 18(suppl. 1): 289-305.

GOTELLI, N.; COLWELL, R.K. 2001. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379-391.

HAMMER, Ø., HARPER, D.A.T.; RYAN, P.D. 2001. PASt: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4: 9 pp.

HUBBELL, S.P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Monographs in Population Biology no. 32, 1st ed. Princeton (NJ): Princeton University Press.

KOLEFF, P.; GASTON, K. J.; LENNON, J. J. 2003. Measuring beta diversity for presence –absence data. Journal of Animal Ecology 72: 367-382.

LEGENDRE, P.; LEGENDRE, L. 1998. Numerical Ecology. 2nd ed. Amsterdam: Elsevier.

MENDONÇA, M. DE S.; Jr. 2001. Gall-inducing insect diversity patterns: the resource synchronisation hypothesis. Oikos 95: 171-176.

NOVOTNY, V.; MILLER, S.E.; HULCR, J.; DREW, R.A.I.; BASSET, Y.; JANDA, M.; SETLIFF, G.P.; DARROW, K.; STEWART, A.J.A.; AUGA, J.; ISUA, B.; MOLEM, K.; MANUMBOR, M.; TAMTIAI, E.; MOGIA, M. WEIBLEN, G.D. 2007. Low beta diversity of herbivorous insects in tropical forests. Nature 448: 692-697.

OLSON, D.M.; DINERSTEIN, E.; WIKRAMANAYAKE, E.D.; BURGESS, N.D.; POWELL, G.V.N.; UNDERWOOD, E.C.; D’AMICO, J.A.; ITOUA, I.; STRAND, H.E.; MORRISON, J.C.; LOUCKS, C.J.; ALLNUTT, T.F.; RICKETTS, T.H.; KURA, Y.; LAMOREUX, J.F.; WETTENGEL, W.W.; HEDAO, P.; KASSEM, K.R. 2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 51: 933-938.

PRICE, P.W.; FERNANDES, G.W.; LARA, A.C.F.; BRAWN, J.; BARRIOS, H.; WRIGHT, M.G.; RIBEIRO, S.P.; ROTHCLIFF, N. 1998. Global patterns in local number of insect gall-inducing species. Journal of Biogeography 25: 581-591.

RIBEIRO, S.P. 2002. Insect herbivores in the canopies of savannas and rainforests: revisiting Fernandes and Price’s Harsh Environment hypothesis. In: Basset, Y., Novotny, V., Miller, S., Kitching, R. (eds). Arthropods of Tropical Forests: Spatio-Temporal Dynamics and Resource Use in the Canopy. Cambridge (MA); Cambridge University Press, p. 234-245.

SEMA (Secretaria Estadual do Meio Ambiente) 2002. Unidades de Conservação: Parque Estadual do Espinilho [Internet]. Porto Alegre (RS): [cited 2010 Mar 12]. Available from: http://www. sema.rs.gov.br/sema/html/bioconh9.htm

TORTORELLI, L.A. 1956. Maderas y bosques Argentinos, 1st ed.Buenos Aires (BA): ACME Editora.

VELDTMAN, R.; MCGEOCH, M.A. 2003. Gall forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: the importance of plant community composition. Austral Ecology 28: 1-13.

WRIGHT, M.G., SAMWAYS, M.J. 1996. Gall-insect species richness in African Fynbos and Karoo vegetation: the importance of plant species richness. Biodiversity Letters 3: 151-155.

WRIGHT, M.G.; SAMWAYS, M.J. 1998. Insect species richness tracking plant species richness in a diverse flora: gall-insects in the Cape Floristic Region, South Africa. Oecologia 115: 427433.

YUKAWA, J.; TOKUDA, M.; UECHI, N.; SATO, S. 2001. Species richness of galling arthropods in Manaus, Amazon and the surroundings of the Iguassu Falls. Esakia 41: 11-15.