Main Article Content


Despite the proven efficiency of Bacillus thuringiensis (Bt) to insects, a number of resistance cases have been reported throughout the world particularly for Plutella xylostella (Lepidoptera: Plutellidae) populations. Although the mechanism of resistance to Bt toxins due to altered receptors appears to be common among Lepidoptera, few studies have evaluated the immune response to Bt toxins in resistant insects. Thus, this study aimed to compare the total and differential counts of hemocytes as well as the nitric oxide levels in resistant and susceptible populations of P. xylostella to Bt after exposure to dipel®PM (Btk) and xentari®WdG (Bta) commercial formulations. Susceptible and resistant insects were exposed to their corresponding LC50   of dipel®PM  or xentari obtained through dose-response curves. Hemolymph samples were collected at 1, 6, and 12 h after treatment for total and differential hemocyte counts and quantification of nitric oxide levels. Dipel®PM caused a significant reduction in the total number of hemocytes in the larvae of both populations, while xentari®WdG affected only the proportion of types of hemocytes. Both formulations interfered with the nitric oxide levels, although no difference was observed between both populations.

DA SOLIDADE-RIBEIRO, L. M., WANDERLEY-TEIXEIRA, V., DA CUNHA, F. M., COELHO-TEIXEIRA, ÁLVARO A., & ABREU DE SIQUEIRA, H. ÁLVARO. (2012). Immunological response of resistant and susceptible Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis. Revista Colombiana De Entomología, 38(2), 208–214.

ABBOTT, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal economic entomology 18: 265-267.

BRAYNER, F. A.; ARAÚJO, H. R. C.; CAVALCANTI, M. G. S.; ALVES, L. C.; PEIXOTO, C. A. 2005. Ultrastructural characterization of the hemocytes of Culex quinquefasciatus (diptera: Culicidae). Micron 36 (4): 359-367.

CASTELO BRANCO, M.; FRANÇA, F. H.; PONTES, L. A.; AMARAL, P. S. T. 2003. Avaliação da suscetibilidade a inseticidas em populações da traça-das-crucíferas de algumas áreas do Brasil. Horticultura Brasileira 21 (3): 549-552.

COLINET, D.; CAZES, D.; BELGHAZI, M.; GATTI, J.-L.; POIRIÉ, M. 2011. extracellular superoxide dismutase in insects characterization, function, and interspecific variation in parasitoid wasp venom. Journal of Biological Chemistry 286 (46): 40111-40121.

CORREIA, A. A.; WANDERLEY-TEIXEIRA, V.; OLIVEIRA, J. V.; TORRES, J. B. 2008. dinámica hemocitaria en larvas de Spodoptera frugiperda (J.e. Smith) (Lepidoptera: Noctuidae) tratadas con nim (Azadirachta indica A. Juss). Boletín de Sanidad Vegetal Plagas 34: 357-365.

COSTA, S. C. P.; RIBEIRO, C.; GIRARD, P. -A.; ZUMBIHL, R.; BREHÉLIN, M. 2005. Modes of phagocytosis of Gram-positive and Gram-negative bacteria by Spodoptera littoralis granular haemocytes. Journal of Insect Physiology 51 (1): 39-46.

DEAN, P.; POTTER, U.; RICHARDS, E. H., EDWARDS, J. P., CHARNLEY, A. K., REYNOLDS, S. E. 2004. Hyperphagocytic haemocytes in Manduca sexta. Journal of Insect Physiology 50 (11): 1027-1036.

DUBOVSKIY, I. M.; KRUKOVA, N. A.; GLUPOV, V. V. 2008. Phagocytic activity and encapsulation rate of Galleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis. Journal of Invertebrate Pathology 98 (3): 360-362.

ERICSSON, J. D.; JANMAAT, A. F.; LOWENBERGER, C.; MYERS, J.H. 2009. Is decreased generalized immunity a cost of Bt resistance in cabbage loopers Trichoplusia ni? Journal of Invertebrate Pathology 100 (2): 61-67.

FALLEIROS, Â. M. F.; BOMBONATO, M. T. S.; GREGÓRIO, E. A. 2003. Ultrastructural and quantitative studies of hemocytes in the sugarcane borer, Diatraea saccharalis (Lepidoptera: Pyralidae). Brazilian Archives of Biology and Technology 46 (2): 287-294.

FARALDO, A. C.; SÁ-NUNES, A.; DEL BEL, E. A.; FACCIOLI, L. H.; LELLO, E. 2005. Nitric oxide production in blowfly hemolymph after yeast inoculation. Nitric oxide 13 (4): 240-246.

FERRÉ, J.; VAN RIE, J. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of entomology 47: 501-533.

FINNEY, D. J. 1971. Probit analysis. Cambridge University Press, London. 68 p.

FORCADA, C.; ALCÁCER, E.; GARCERÁ, M. D.; MARTÍNEZ, R. 1996. differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins. Archives of Insect Biochemistry and Physiology 31 (3): 257-272.

GREEN, L. C.; RUIZ DE LUZURIAGA, K.; WAGNER, D. A.; RAND, W.; ISTFAN, N.; YOUNG, V. R.; TANNENBAUM, S. R. 1981. Nitrate biosynthesis in man. Proceedings of the National Academy of Sciences of the United States of America 78: (12) 7764-7768.

HILLYER, J.; CHRISTENSEN, B. 2002. Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Histochemistry and Cell Biology 117 (5): 431-440.

JIRAVANICHPAISAL, P.; LEE, B. L.; SÖDERHÄLL, K. 2006. Cell-mediated immunity in arthropods: Hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211 (4): 213-236.

KAVANAGH, K.; REEVES, E. P. 2004. exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FeMS Microbiology Reviews 28: 101-112.

LAVINE, M. D.; STRAND, M. R. 2002. Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology 32 (10): 1295-1309.

LEORA-SOFTWARE, 2005. POLO-PLUS, POLO FOR WINDOWS. PETALUMA, LEORA SOFTWARE. LIGHTWOOD, D.J.; ELLAR, D.J.; JARRETT, P. 2000. Role of Proteolysis in determining Potency of Bacillus thuringiensi Cry1Ac delta-endotoxin. Applied and environmental Microbiology 66 (12): 5174-5181.

LING, e.; SHIRAI, k.; kANekATSU, R.; kIGUCHI, k. 2005. Hemocyte differentiation in the hematopoietic organs of the silkworm, Bombyx mori: prohemocytes have the function of phagocytosis. Cell and Tissue Research 320 (3): 535-543.

LING, E.; YU, X. -Q. 2006. Hemocytes from the tobacco hornworm Manduca sexta have distinct functions in phagocytosis of foreign particles and self dead cells. developmental & Comparative Immunology 30 (3): 301-309.

MA, G.; ROBERTS, H.; SARJAN, M.; FEATHERSTONE, N.; LAHNSTEIN, J.; AKHURST, R.; SCHMIDT, O. 2005. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Insect Biochemistry and Molecular Biology 35 (7): 729-739.

MEAD, G. P.; RATCLIFFE, N. A.; RENWRANTZ, L. R. 1986. The separation of insect haemocyte types on Percoll gradients: methodology and problems. Journal of Insect Physiology 32 (2): 167-177.

MILNE, R. E.; PANG, A. S. D.; KAPLAN, H. 1995. A protein complex from Choristoneura fumiferana gut-juice involved in the precipitation of [delta]-endotoxin from Bacillus thuringiensis subsp, sotto. Insect Biochemistry and Molecular Biology 25 (10): 1101-1114.

MOSTAFA, A. M.; FIELDS, P. G.; HOLLIDAY, N. J. 2005. effect of temperature and relative humidity on the cellular defense response of Ephestia kuehniella larvae fed Bacillus thuringiensis. Journal of Invertebrate Pathology 90 (2): 79-84.

NAPPI, A. J.; VASS, E.; FREY, F.; CARTON, Y. 1995. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. european Journal of Cell Biology 68 (4): 450-456.

NAPPI, A. J.; VASS, E.; FREY, F.; CARTON, Y. 2000. Nitric oxide involvement in Drosophila immunity. Nitric oxide 4 (4): 423-430.

NEGREIRO, M. C. C.; ANDRADE, F. G. D.; FALLEIROS, Â. M. F. 2004. Sistema imunológico de defesa em insetos: uma abordagem em lagartas da soja, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), resistentes ao AgMNPV. Semina: Ciências Agrárias 25 (4): 293-308.

PÉREZ, C. J.; SHELTON, A. M. 1997. Resistance of Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis Berliner in Central America. Journal of economic entomology 90 (1): 87-93.

RAHMAN, M. M., ROBERTS, H. L. S., SARJAN, M., ASGARI, S., SCHMIDT, O. 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. . Proceedings of the National Academy of Sciences of the United States of America 101 (9): 2696-2699.

RIBEIRO, C.; BREHÉLIN, M. 2006. Insect haemocytes: What type of cell is that? Journal of Insect Physiology 52 (5): 417-429.

ROBERTSON, J. L.; PREISLER, H. K. 1992. Pesticide bioassays with arthropods. CRC Press, Inc., Boca Raton. 125 p.

RUSSO, J.; BREHÉLIN, M.; CARTON, Y. 2001. Haemocyte changes in resistant and susceptible strains of D. melanogaster caused by virulent and avirulent strains of the parasitic wasp Leptopilina boulardi. Journal of Insect Physiology 47 (2): 167-172.

SAS INSTITUTE INC., 1999. STAT User’s guide. SAS Institute, Cary.

SAYYED, A. H.; RAYMOND, B.; IBIZA-PALACIOS, M. S.; ESCRICHE, B.; WRIGHT, D.J. 2004. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Applied and environmental Microbiology 70 (12): 7010-7017.

SILVA, C. C. A. 2002. Aspectos do sistema imunológico dos insetos. Biotecnologia Ciência & desenvolvimento 24: 68-72.

TABASHNIK, B. E.; CUSHING, N. L.; FINSON, N.; JOHNSON, M.W. 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of economic entomology 83 (5): 1671-1676.

TALEKAR, N. S.; SHELTON, A. M. 1993. Biology, ecology, and management of the diamondback moth. Annual Review of entomology 38: 275-301.

TSAKAS, S.; MARMARAS, V. J. 2010. Insect immunity and its signalling: an overview. Invertebrate Survival Journal 7(2): 228-238.

WHALON, M. E.; MOTA-SANCHEZ, D.; HOLLINGWORTH, R. M. 2008. Analysis of global pesticide resistance in arthropods. p. 5-31. In: Whalon, M. e. (ed.). Global Pesticide Resistance in Arthropods. CABI Publishing. Wallingford. United States of America. 192 p.

WHITTEN, M. M. A.; MELLO, C.B.; GOMES, S.A.O.; NIGAM, Y.; AZAMBUJA, P.; GARCIA, E.S.; RATCLIFFE, N.A. 2001. Role of superoxide and reactive nitrogen intermediates in Rhodnius prolixus (Reduviidae)/ Trypanosoma rangeli interactions. experimental Parasitology 98 (1): 44-57.

WRIGHT, D. J.; IQBAL, M.; GRANERO, F.; FERRÉ, J. 1997. A change in a single midgut receptor in the diamondback moth (Plutella xylostella) is only part responsible for field resistance to Bacillus thuringiensis subsp. kurstaki and Bacillus thuringiensis subsp. aizawai. Applied and evironmental Microbiology 63 (5): 1814-1819.

YEATON, R. W. 1983. Wound Responses in Insects. American Zoologist 23 (1): 195-203.

ZHAO, J. Z.; ZHU, G. R.; ZHU Z. L.; WANG W. Z. 1993. Resistance of diamondback moth to Bacillus thuringiensis in China. Resistance Pest Management 5: 11-12.