Main Article Content

Authors

The whitefly Trialeurodes vaporariorum, an economically important pest in vegetables, is managed with synthetic pesticides and has generated resistance with adverse effects on the environment. In the search for alternative management, adult repellence with raw extracts (methanol, ethanol, dichloromethano, and hexane) essential oils, and major compounds of clove and pepper was tested. For this, a treated tomato leaf was placed at concentrations of 1.0 to 0.000001 % within a 1 L beaker containing a 10 mL flask with water. Subsecuently, 20 adults of 2 d of age were introduced. After 3 to 72 h, the posed adults were quantified, and repellence was determined from the difference. The raw extracts, essential oils, and major compounds of clove and pepper repel from 32.5 to 90.2 % of the adult population in 3 to 72 h. The cloves and pepper EO have a better repellent effect than raw extracts and secondary compounds, since they manage to repel 46.2 % to 100 %. The clove EO at the concentration of 1.0 % achieves 100 % repellency at 48 and 72 h after application, while the pepper EO reaches 97.5 % at 72 h after application; in practice, ethanolic crude extract of both plants should be used at a concentration of 0.000001 % since they can repel 38.7 to 87.5 % of adults, from 3 to 72 h, and its repellent effect is maintained; also, it is easier to acquire, safer for the operator, distributor and consumer; and is considered a solvent for the extraction of secondary compounds in organic farming standards.

Aguilar-Astudillo, E., Rodríguez-Hernández, C., Bravo-Mojica, H., Soto-Hernández, R. M., Bautista-Martínez, N., & Guevara-Hernández, F. (2020). Repellency of adults of whitefly Trialeurodes vaporariorum (Heteroptera: Aleyrodidae) with clove and pipper. Revista Colombiana De Entomología, 46(2), e7520. https://doi.org/10.25100/socolen.v46i2.7520

ABO-EL-SAAD, M. M.; AL AJLAN, A. M.; AL-EID, M. A.; BOU-KHOWH, I. A. 2011. Repellent and fumigant effects of essential oil from clove buds Syzygium aromaticum L. against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural Science and Technology A 1: 613-620. DOI: 10.17265/2161-6256/2011.08A.019http://www.davidpublisher.org/Public/uploads/Contribute/55c9adc900ec5.pdf

BAGAVAN, A.; RAHUMAN A. A. 2011. Evaluation of larvicidal activity of medicinal plant extracts against three mosquito vec-tors. Asian Pacific Journal of Tropical Medicine 4 (1): 29-34. https://doi.org/10.1016/S1995-7645(11)60027-8

BALDIN, E. L. L.; AGUIAR, G. P.; FANELA, T. L. M.; SOARES, M. C. E.; GROPPO, M.; CROTTI, A. E. M. 2015. Bioactivity of Pelargonium graveolens essential oil and related monoter-penoids against sweet potato whitefly, Bemisia tabaci biotype B. Journal of Pesticide Pest Science 88 (1): 191-199. https://doi.org/10.1007/s10340-014-0580-8

BALDIN, E. L. L.; CROTI, A. E. M.; WAKABAYASHI, K. A. L.; SILVA, J. P. G. F.; AGUIAR, G. P.; SOUZA, E. S.; VENEZIANI, R. C. S.; GROPPO, M. 2013. Plant-derived essential oils affect-ing settlement and oviposition of Bemisia tabaci (Genn.) biotype B on tomato. Journal of Pesticide Pest Science 86 (2): 301-308. https://doi.org/10.1007/s10340-012-0462-x

BAO-LIANG, T.; QI-ZHI, L.; ZHI-LONG, L.; PENG, L.; JIE-WEN, W. 2015. Insecticidal potential of clove essential oil and its constituents on Cacopsylla chinensis (Hemiptera: Psyllidae) in laboratory and field. Journal of Economic Entomology 108 (3): 957-961. https://doi.org/10.1093/jee/tov075

BIRGÜCÜ, A. K.; ҪELIKPENÇE, Y.; AKDAŞ, A.; GÖKKAYA, S.; KARACA, I. 2016. Effects of different essential oils on oviposi-tion behavior of Trialeurodes vaporariorum. Turkish Bulletin of Entomology 6 (3): 213-220. https://doi.org/10.16969/teb.31464

CAMARILLO, R. G.; ORTEGA, A. L. D.; SERRATO, C. M. A.; RO-DRÍGUEZ, H. C. 2009. Actividad biológica de Tagetes filifolia(Asteraceae) en Trialeurodes vaporariorum, (Hemiptera: Aley-rodidae). Revista Colombiana de Entomología 35 (2): 177-184. Disponible en: http://www.scielo.org.co/pdf/rcen/v35n2/v35n2a12.pdf

CARAPIA, R. V. E.; CASTILLO-GUTIÉRREZ, A. 2013. Estudio comparativo sobre la morfología de Trialeurodes vaporariorum(Westwood) y Bemisia tabaci (Gennadius) (Hemiptera: Aleyro-didae). Acta Zoologica Mexicana (n.s.) 29 (1): 178-193. https://doi.org/10.21829/azm.2013.291394

CARDONA, C.; RODRÍGUEZ, I. V.; BUENO, J. M.; TAPIA, X. 2005. Biología y manejo de la mosca blanca Trialeurodes vaporariorum en habichuela y fríjol. Centro Internacional de Agricultura Tropical (CIAT); Departament for International De-velopment (DFID). 50 p. Disponible en: http://ciat-library.ciat.cgiar.org/Articulos_Ciat/Car%C3%A1tula.pdf [Fecha revisión: 18 junio 2017].

CHAO, L. X.; FENG, H. J.; ZHOU, L.; LONG, L. Z. 2014. Eval-uation of fumigant toxicity of essential oils of Chinese medic-inal herbs against Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Journal of Entomology and Zoology Studies 2 (3): 164-169. https://www.entomoljournal.com/archives/2014/vol2issue3/PartC/50-168.pdf

CRUZ-ESTRADA, A. E.; RUÍZ-SÁNCHEZ, E.; GAMBOA-AN-GULO, M. 2015. Activity of Eugenia winzerlingii Standl ex-tracts on Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). Revista de Protección Vegetal 30 (1): 38. http://scielo.sld.cu/pdf/rpv/v30s1/rpv015s15.pdf

DEHGHANI, M.; AHMADI, K. 2013. Repellence and Anti-oviposition activities of essential oils and aqueous extracts from five aromatic plants against greenhouse whitefly. Bulgarian Journal of Agricultural Science 19 (4): 691-696. https://www.agrojournal.org/19/04-10.pdf

DI-RIENZO, J. A.; CASANOVES, F.; BALZARINI, M. G.; GONZÁLEZ, L.; TABLADA, M.; ROBLEDO, C. W. 2013. In-foStat, versión 2013. Grupo InfoStat, FCA, Universidad Nacio-nal de Córdoba, Argentina. Disponible en: http://www.infostat.com.ar [Fecha revisión: 15 mayo 2014].

DIARIO OFICIAL DE LA FEDERACIÓN. 1997. Norma Oficial Mexicana NOM-037-FITO-1995. Por la que se establecen las especificaciones del proceso de producción y procesamiento de productos agrícolas orgánicos. Disponible en: http://www.dof.gob.mx/nota_detalle.php?codigo=4876443&fecha=23/04/1997[Fecha revisión: 20 octubre 2017].

ENAN, E. E. 2005. Molecular and pharmacological analysis of an octopamine receptor from american cockroach and fruit fly in response to plant essential oils. Archives of Insect Biochemistry and Physiology 59 (3): 161-171. https://doi.org/10.1002/arch.20076

FOUAD, H. A. 2013. Bioactivity of five essential oils against Bruchidius incarnatus (Bohemann, 1833). Notulae Scientia Bio-logicae 5 (3): 354-359. https://doi.org/10.15835/nsb539065

GARCÍA S., M. A. 2002. Manual de Prácticas de Química Orgánica II. Primera edición. Unidad Iztapalapa, Universidad Autónoma Metropolitana. Iztapalapa, México D.F., México. 120 p.

GERLING, D. 2002. Una reinterpretación sobre las moscas blancas. Manejo Integrado de Plagas 63: 13-21. Disponible en: http://www.sidalc.net/repdoc/A2096E/A2096E.PDF

GONZÁLEZ-COLOMA, A.; MARTIN-BENITO, D.; MOHAMED, N.; GARCÍA-VALLEJO, M. C.; SORIA, A. C. 2006. Anti-feedant effects and chemical composition of essential oils from different populations of Lavandula luisieri L. Biochemical Sys-tematics and Ecology 34 (8): 609-616. https://doi.org/10.1016/j.bse.2006.02.006

GRUNDY, D. L.; STILL, C. C. 1985. Inhibition of acetylcholin-esterases by pulegone-1,2-epoxide. Pesticide Biochemistry and Physiology 23 (3): 383-388. https://doi.org/10.1016/0048-3575(85)90100-2

GUAN, W.; LI, S.; YAN, R.; TANG, S.; QUAN, C. 2007. Compar-ison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chemistry 101 (4): 1558-1564. https://doi.org/10.1016/j.foodchem.2006.04.009

HO, S. H.; CHENG, L. P. L.; SIM, K.Y.; TAN, H. T. W. 1994. Po-tential of cloves (Syzygium aromaticum (L.) (Merr. & Perry) as a grain protectant against Tribolium castaneum (Herbst) and Si-tophilus zeamais Motsch. Postharvest Biology and Technology 4 (1): 179-183. https://doi.org/10.1016/0925-5214(94)90019-1

HUANG, Y.; SHUIT-HUNG, H.; HSIEN-CHIEH, L.; YEN-LING, Y. 2002. Insecticidal properties of eugenol, isoeguenol and meth-yleugenol and their effects on nutrition of Sitophilus zeamaisMotsch. (Coleoptera: Curculionidae) and Tribolium castaneum(Herbst) (Coleoptera: Tenebrionidae). Journal of Stored Prod-ucts Research 38 (5): 403-412. https://doi.org/10.1016/S0022-474X(01)00042-X

HUSSEIN, H. S.; SALEM, M. Z. M.; SOLIMAN, A. M. 2017. Re-pellent, attractive, and insecticidal effects of essential oils from Schinus terebinthifolius fruits and Corymbia citriodora leaves on two whitefly species, Bemisia tabaci, and Trialeurodes ricini. Scientia Horticulturae 216: 111-119. https://doi.org/10.1016/j.scienta.2017.01.004

IL-KWON, P.; SANG-CHUL, S. 2005. Fumigant activity of plant essential oils and components from garlic (Allium sativum) and clove bud (Eugenia caryophyllata) oils against the Japanese ter-mite (Reticulitermes speratus Kolbe). Journal of Agricultural and Food Chemistry 53 (11): 4388-4392. https://doi.org/10.1021/jf050393r

ISIKBER, A. A.; ALMA. M. H.; KANAT, M.; KARCI, A. 2006. Fumigant toxicity of essential oils from Laurus nobilis and Rosmarinus officinalis against all life stages of Tribolium confusum. Phytoparasitica 34 (2): 167-177. https://doi.org/10.1007/BF02981317

ISLAM, M. S.; MAHBUB, H., M.; XIONG, W.; ZHANG, S. C.; LEI, C. L. 2009. Fumigant and repellent activities of essential oil from Coriandrum sativum (L.) (Apiaceae) against red flour bee-tle Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Pest Science 82 (2): 171-177. https://doi.org/10.1007/s10340-008-0236-7

JUN-RAN, K.; PERUMALSAMY, H.; BONG-KI, S.; YOUNG-JOON, A. 2012. Fumigant toxicity of plant essential oils against Camptomyia corticalis (Diptera Cecidomyiidae). Journal of Eco-nomic Entomology 105 (4): 1329-1334. https://doi.org/10.1603/EC12049

KAFLE, L.; JEN, S. C. 2013. Toxicity and repellency of com-pounds from clove (Syzygium aromaticum) to red imposted im-ported fire ants Solenopsis invicta (Hymenoptera: Formicidae). Journal of Economic Entomology 106 (1): 131-135. https://doi.org/10.1603/EC12230

MENDOZA-GARCÍA, E. E.; ORTEGA-ARENAS, L. D.; PÉREZ-PACHECO, R.; RODRÍGUEZ-HERNÁNDEZ, C. 2014. Repellency, toxicity and oviposition inhibition of vegetable extracts against greenhouse whitefly Trialeurodes vaporariorum(Westwood) (Hemiptera: Aleyrodidae). Chilean Journal of Agri-cultural Research 74 (1): 41-48. https://doi.org/10.4067/S0718-58392014000100007

METHANOL INSTITUTE. 2013. Manual de manipulación segura del metanol. Disponible en: http://www.methanol.org/wp-content/uploads/2016/06/Methanol-Safe-Handling-Manual-Final_Spanish.pdf [Fecha revisión: Octubre 2017].

MIYAZAWA, M.; WATANABE, H.; KAMEOKA, H. 1997. Inhibi-tion of acetylcholinesterase activity by monoterpenoids with a p-menthane skeleton. Journal of Agriculture and Food Chemical Chemistry 45 (3): 677-679. https://doi.org/10.1021/jf960398b

NATHAN, S. S.; HISHAM, A.; JAYAKUMAR, G. 2008. Larvicidal and growth inhibition of the malaria vector Anopheles stephensiby triterpenes from Dysoxylum malabaricum and Dysoxylum beddomei. Fitoterapia 79 (2): 106-111. https://doi.org/10.1016/j.fitote.2007.07.013

ORTEGA, A. L. D.; SCHUSTER, D. J. 2000. Repellency to silver-leaf whitefly adults. Gulf Coast Research & Education Center. University of Florida. Bradenton, Florida, EE. UU. 2 p.

ORTIZ, C. M.; MEDINA, T. R.; VLADIVIA VALDIVIA, B. R.; ORTIZ, C. A.; ALVARADO, C. S.; RODRÍGUEZ, B. J. R. 2010. Mosquitas blancas plaga primaria de hortalizas en Nayarit. Re-vista Fuente 2 (5): 31-40. http://fuente.uan.edu.mx/publica-ciones/02-05/4.pdf

PAVELA, R. 2009. Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae). Industrial Crops and Products 30 (2): 311-315. https://doi.org/10.1016/j.ind-crop.2009.06.005

PHASOMKUSOLSIL, S.; SOONWERA, M. 2011. Comparative mosquito repellency of essential oils against Aedes aegypti(Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). Asian Pacific Journal of Tropical Bio-medicine 1 (1): S113-S118. https://doi.org/10.1016/S2221-1691(11)60136-6

PICKETT, J. A.; WADHAMS, L. J.; WOODCOCK, C. M. 1997. Developing sustainable pest control from chemical ecology. Agriculture, Ecosystems and Environment 64 (2): 149-156. https://doi.org/10.1016/S0167-8809(97)00033-9

PITASAWAT, B.; CHAMPAKAEW, D.; CHOOCHOTE, W.; JITPAKDI, A.; CHAITHONG, U.; KANJANAPOTHI, D.; RATTANACHANPICHAI, E.; TIPPAWANGKOSOL, P.; RI-YONG, D.; TUETUN, B.; CHAIYASIT, D. 2007. Aromatic plant-derived essential oil: An alternative larvicide for mosquito control. Fitoterapia 78 (3): 205-210. https://doi.org/10.1016/j.fitote.2007.01.003

RIVERA, J. L.; LIMA, R. 2013. Efecto desorbedor del metanol en la membrana celular. Revista Especializada en Ciencias Quími-co-Biológicas 16 (2): 93-97. https://doi.org/10.1016/S1405-888X(13)72080-1

RODRÍGUEZ, H. C. 2004. Plantas atrayentes de insectos plaga. pp. 203-234. En: Tornero, C. M.; López-Olguín, J. F.; Aragón, A. G. (Eds.). Ciencias Ambientales y Agricultura. Publicación especial de la Benemérita Universidad Autónoma de Puebla. Puebla, México. Disponible en: http://www.cm.colpos.mx/ce-sareo/Divulgaci%C3%B3n/Plantas%20atrayentes%20de%20insectos%20plaga.pdf

SALVUCCI, M. E. 2000. Sorbitol accumulation in whiteflies: Evi-dence for a role in protecting proteins during heat stress. Journal of Thermal Biology 25 (5): 353-361. https://doi.org/10.1016/S0306-4565(99)00107-2

SCHALCHER, P. A. I.; SCHALCHER, P. A.G.; SOBRINHO O. P. L.; CANTANHEDE, E. K. P.; SALDANHA, S. L. F. 2014. Actividade antimicrobiana no combate as larvas do mosquito Aedes aegypti: Homogeneização dos óleos essenciais do lina-lol e eugenol. Educación Química 25 (4): 446-449. https://doi.org/10.1016/S0187-893X(14)70065-5

SEON-MI, S.; KIM, J.; SANG-GIL, L.; CHANG-HOON, S.; SANG-CHUL, S.; IL-KWON, P. 2009. Fumigant antitermit-ic activity of plant essential oils and components from ajowan (Trachyspermum ammi) allspice (Pimenta dioica), caraway (Carum carvi), dill (Anethum graveolens), geranium (Pelargonium graveolens) and litsea (Litsea cubeba) oils against Japanese ter-mite (Reticulitermes speratus Kolbe). Journal of Agricultural and Food Chemistry 57 (15): 6596-6602. https://doi.org/10.1021/jf9015416

SHARAWI, S. E.; ABD-ALLA, S. M.; OMARA, S. M.; AL-GHAN-DIGHAMDI, K. M. 2013. Surface contact toxicity of clove and rosemary oils against American cockroach, Periplaneta Americana (L.). African Entomology 21 (2): 324-332. https://doi.org/10.4001/003.021.0204

SIGHAMONY, S.; ANEES, I.; CHANDRAKALA, T.; OSMANI, Z. 1986. Efficacy of certain indigenous plant products as grain protectants against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). Journal of Stored Products Research 22 (1): 21-23. https://doi.org/10.1016/0022-474X(86)90042-1

TAN, K. H.; NISHIDA, R. 2012. Methyl eugenol: its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. Journal of Insect Science 12 (56): 1-60. https://doi.org/10.1673/031.012.5601

WOLFE, G. R.; HENDRIX, D. L.; SALVUCCI, M. E. 1998. A ther-moprotective role for sorbitol in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology 44 (7-8): 597-603. https://doi.org/10.1016/S0022-1910(98)00035-3

WON-IL, C.; EUN-HEE, L.; BYEOUNG-RYEOL, C.; HYUNG-MAN, P.; YOUNG-JOON, A. 2003. Toxicity of plant essential oils to Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Journal of Economic Entomology 96 (5): 1479-1484. https://doi.org/10.1093/jee/96.5.1479

WON-SIK, C.; BYEOUNG-SOO, P.; YOUNG-HAENG, L.; DO-YOUN, J. D.; HEY-YOUNG Y. H.; SUNG-EUN, L. 2006. Fumigant toxicities of essential oils and monoterpenos mono-terpenes against Lycoriella mali adults. Crop Protection 25 (4): 398-401. https://doi.org/10.1016/j.cropro.2005.05.009

XIAO-WEI, W.; PING, L.; SHUESHU-SHENG, L. 2017. Whitefly interactions with plants. Current Opinion in Insect Science 19: 70-75. https://doi.org/10.1016/j.cois.2017.02.001

XIE, Y.; YANG, Z.; CAO, D.; RONG, F.; DING, H.; ZHANG, D. 2015. Antitermitic and antifungal activities of eugenol and its congeners from the flower buds of Syzygium aromaticum(clove). Industrial Crops and Products 77: 780-786. https://doi.org/10.1016/j.indcrop.2015.09.044

ZOUBIRI, S.; BAALIOUAMER, A. 2014. Potentiality of plants as source of insecticide principles. Journal of Saudi Chemical So-ciety 18 (6): 925-938. https://doi.org/10.1016/j.jscs.2011.11.015

Received 2019-02-14
Accepted 2019-10-22
Published 2020-12-28