Main Article Content

Authors

The use of Bacillus thuringiensis as a biological pest control agent requires basic studies related to its mode of action in the selected target insect. Tochniques such as the use of brush border membrane vesicles (BBMV) obtained from epithelial gut tissues of insects have become a valuable tools around the world for studying this mechanism in Bacillus thuringiensis proteins. The objective of this work was to analyze the binding of Cry3Aa, 3Ba, 3Bb,  3Ca and 7Aa B. thuringiensis proteins to BBMV obtained from the digestive tract of Premnotrypes vorax Hustache, in order to explore their potential as biological control agents for this economically important pest in Colombian potato crops. This work was carried out in the Instituto de Biotecnología at the Universidad Nacional de Colombia. Purification of BBMV and protein labeling with biotin were carried our according to methods previously standardized by the authors. Binding assays showed that while Cry3Aa, Cry3Bb and Cry3Ca bind to P. vorax BBMV, Cry3Ba and Cry7Aa did not; however, binding was never correlated with toxicity to first instars of the target insect. Protein blot analysis showed the presence of two possible binding proteins of 70 and 97 KDa, respectively, being the first report made  for this endemic pest of the Colombian Andean zone.

MARTÍNEZ, WILSON, & CERÓN-S., J. (2004). Binding of Bacillus thuringiensis proteins with brush border membranes vesicles of the digestive tract of the Andean potato weevil Premnotrypes vorax (Coleoptera: Curculionidae). Revista Colombiana De Entomología, 30(1), 51–56. https://doi.org/10.25100/socolen.v30i1.9526

ARANDA. E. 1996. Análisis de las interacciones in vitro e in vivo de las d-endotoxinas de Bacillus thuringiensis con el epitelio intestinal de diferentes insectos plaga. Tesis de grado Ph. D. en Biotecnología. Universidad autónoma del estado de Morelos, Cuernavaca, México. 100 p.

ARANDA, E.; SÁNCHEZ, J.; PEFEROEN, M.; GÜERECA, L.; BRAVO, A. 1996. Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoplera frugiperda (Lepidoptera: Noctuidae). Joumal of Invertebrate Pathology 68: 203-212.

BELFIORE C. J.; VADLAMUDI R. K.; OSMAN Y. A.; BULLA L. E. 1994. A specific binding protein from Tenebrio molitor (L.) for the insecticidal toxin of Bacillus thuringiensis subsp. tenebrionis. Biochemical and Biophysical Research Communications 200 (1). 359-364.

BOLLAG, D.; EDELSTEIN, S. 1991. Protein methods. Wiley and Sons Inc. New York.250 p.

BRAVO, A.; HENDRlCKX, K.; JANSENS, S.; PEFEROEN, M. 1992a. Immunocytochemical analysis of specific binding of Bacillus thuringiensis insecticidal crystal proteins to lepidopteran and coleopteran midgut membranes. Journal of Invertebrate Pathology 60: 247-253.

BRAVO, A.; JANSENS, S.; PEFEROEN, M. 1992b. Immunocytochemical localization of Bacillus thuringiensis insecticidal cristal proteins in intoxicated insects. Journal of Invertebrate Pathology 60: 237-246.

CHAMBERS, C.: CARROLL, J.; ELLAR, D. 2000. Characterization of the Cry IAc-binding carbohydrate epitopes on Manduca sexta 120 KDa aminopeptidase. Resúmenes. XXXIII Meeting Society for invertebrate pathology. p. 33. Guanajuato, México.

DENOLF, P.; JANSENS, S.; VAN HOUDT, S.; PEFEROEN, M.; DEGHEELE, D.; VAN RIE, J. 1993a. Biotinylation of Bacillus thuringiensis insecticidal crystal proteins. Applied and Environmental Microbiology 59 (6): 1821-1827.

DENOLF, P.; JANSEN, S.; PEFEROEN, M.; DEGHEELE, D.; VAN RIE, J. 1993b. TWo different Bacillus thuringiensis deltaendotoxins receptors in the midgut brush border membrane of the european corn borer Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae). Applied and Environmental Microbiology 59 (6): 1828-1837.

ESTADA, U.; FERRE, J. 1994. Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border of the Cabbage Looper Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) and selection for resistance to one of the cristal proteins. Applied and Environmental Microbiology 60 (10): 3840-3846.

GARCÍA, l.; SÁNCHEZ, J.; RAUSELL, C.; MARTlNEZ, A.; DE MAAG, R.; REAL, M.; BRAVO, A. 2000. Specific binding and pore formation activity of Cry3A toxin in membranes isolated from Leptinotarsa decemlineala and Tenebrio molitor. Resúmenes XXXIII Meeting Society for Invertebrate Pathology. p. 33. Guanajuato, México.

GARCZYNSKI, S.; CRIM J.; ADANG, M. 1991. Identification of putative insect brush border membrane binding molecules specific to Bacillus thuringiensis deltaendotoxin by protein blot analysis. Applied and Environmental Microbiology 57 (10): 2816-2820.

HOFMANN, C.: VANDERBRUGGEN, H.; HÓFTE, H.; VAN RIE,J.; JANSENS, S.; VANMELLAERT. H. 1988. Specificity of Bacillus thuringiensis delta-endotoxin is correlated with the presence of high affinity binding sites in the brush border membrane of target insect midguts. Procceedings of the National Academy of Sciences. USA. 85: 7844-7848.

KELLER, B.; LANGENBRUNCH, G. 1993. Control of coleopteran pests by Bacillus thuringiensis. p. 171191. En: Johnson, H. (ed.). Bacillus thuringiensis An environmental biopesticide: Theory and Practice. Wiley and Sons publishers. London. England. 305 p.

KOLLER, C.; BAUER, L.; HOLLlNGWORTH, R. 1992. Characterization of the pH-mediated solubility of Bacillus thuringiensis var. San diego native delta-endotoxin crystals. Biochemical and biophysical research communications 84 (2): 692-699.

LAMBERT, B.; HOFTE, H.; ANNYS, K.; JANSEN, S.; SOETAERT, J.; PEFEROEN, M. 1992. Novel B. thuringiensis insecticidal cristal protein with a silent activity against coleopteran larvae. Applied and environmental Microbiology 58 (8): 2536-2542.

LECUONA, R. 1996. Control microbiano, utopia o realidad. p. 13-15. En: Lecuona, R. (ed.). Microorganismos patógenos empleados en el control microbiano de insectos plaga. Mariano Mas. Buenos Aires. Argentina. 338 p.

LOSEVAA, O.; IBRAHIM, M.; CANDASA, M.; KOLLERB, N.; BAUERB, L.; BULLA, L. 2001. Changes in protease activity and Cry3Aa toxin binding in the colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins. Insect Biochemical and Molecular Biology 32 (5): 567-577.

MACINTOSH, S.; LlDSTER, B.; KIRKHAM, L. 1994. Isolation of brush border membrane vesicles from whole diamonback moth (Lepidoptera: Plutellidae) larvae, Journal of Invertebrate Pathology 63: 97-98.

MACPEARSON, S.; PERLAK, F.; FUCHS, R.; MARRONE, P.; LAVRIK, P.; FISCHHOFF, D. 1988. Characterization of the coleopteran specific protein gene of Bacillus thuringiensis Varo tenebrionis. Bio/Technology 6 (1): 61-66.

MARTÍNEZ, W.; CERÓN, J. 2002. Evaluación de la toxicidad de proteínas de Bacillus thuringiensis Berliner hacia el gusano blanco de la papa Premnotrypes vorax Hustache. Agronomía Colombiana 19 (1-2): 89-95.

MARTÍNEZ, W.; CERÓN, J. 2003. Obtención de vesículas de las microvellosidades del epitelio intestinal del gusano blanco de la papa Premnotrypes vorax. Revista Colombiana de Biotecnología IV (2): 33-37.

MARTÍNEZ, R.; MARTÍNEZ, N. 1997. Diseño de experimentos: Analisis de datos estándar y no estándar. Editora Guadalupe Ltda. Bogotá, Colombia. 479 p.

ORR, D.; CHARLES, P. 1998. Parasitoid and predators. p. 3-34. En: Rechcigl, J. (ed.) Biological and biotechnological control of insect pests. CRC Press. Boca Ratón, Florida. 375 p.

PINZÓN, M. A. 1993. Calendario de siembras, recolección y proceso de comercialización de la papa en Colombia. IICA Colombia. Bogotá. 80 p.

QUlÑONES, L.; QUINTERO, R. 1996. Mecanismo molecular de acción de las deltaendotoxinas de Bacillus thuringiensis . P. 63-112. En: Galán, L. (ed.). Avances recientes en la biotecnología de Bacillus thuringiensis. Universidad Autónoma de Nuevo León. Monterrey, México. 350 p.

RIVERA, G.; PINTO, L. 2001. Evaluación de patogenicidad de aislamientos nativos de hongos entomopatógenos sobre el gusano blanco de la papa Premnotrypes vorax Hustache. Revista Colombiana de Biotecnología 3 (2): 53-65.

SCHNEPF.E.; CRICKMORE, N.; VANRIE, J.; LERECLUS, D.; BAUM, J.; FEITELSON, J.; ZEIGLER D.; DEAN, D. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews 62: 775-805.

SCHWAB, G.; CULVER, P. 1990. In vitro analysis of Bacillus thuringiensis delta-endotoxin action. p. 36-45. En: Hickle, L. (ed.). Analytical chemistry of Bacillus thuringiensis American Chemical Society. Washington. USA. 306 p.

SAKAI, H.; OTAKE, K.; ESAKI, M.; KOMANO, T.; YAMAGIWA, M. 2000. Binding of ICP to the BBMV's and midgut epithelia of Culex pipiens and Bombyx mori larvae. Resúmenes. XXXIII Meeting Society of Invertebrate Pathology. p 85. Guanajuato, México.

SLANEY, A.; ROBBINS, H.; LEIGH, E. 1992. Mode of action of Bacillus thuringiensis toxin Cry lilA: An analysis of toxicity in Leptinotarsa decemlineata (Say) and Diabrotica undecimpunctata Howardi Barber. Insecticidal Biochemical Molecules 22 (1): 9-18.

VAN FRANKENHUYZEN, K. 1993. The challenge of Bacillus thuringiensis. p 1-35. En: Johnson, H. (ed.). Bacillus thuringiensis An environmental biopesticide: Theory and Practice. Wiley and Sons publishers. London. England. 305 p.

VAN RIE, J.; JANSEN, S.; HOFTE, H.; DEGHEELE, D.; VAN MELLAERT, H. 1989. Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the midgut of target insects. European Journal of Biochemistry 186: 239-247.

VAN RIE, J.; JANSEN, S.; HOFTE, H.; DEGHEELE, D.; VAN MELLAERT, H. 1990. Receptors on the brush border membrane of the insect midgut as determinants of the especificity of Bacillus thuringiensis delta-endotoxins. Applied and Environmental Microbiology 56 (5): 1378-1385.

VÉLEZ, R. 1997. Plagas agrícolas de impacto económico en Colombia : bionomía y manejo integrado. Editorial Universidad de Antioquia. Medellín, Colombia. 482 p.

WOLFERSBERGER, M.; LUTHY, P.; MAURER, A.; PARENTI, P.; SACCHI, V.; GIORDANA, B.; HANOZET, G. 1987. Preparation and partial characterization of amino acid transporting BBMV's from the larval midgut of the cabbage butterfly. Compendium of Biochemical Physiology 86: 301-308.