Main Article Content

Authors

The digestive fluid of the coffee berry borer, Hypothenemus hampei, larvae contains aspartic proteases, which show greatest activity at pH 3,0 and a temperature of 40°C. By using isoelectric focusing gels, it was possible to observe two well-defined bands in the intestinal tract. The band of highest activity was found very close to the anodic side and showed a pI of 5,2. The addition of 0,1µM of Pepstatin A caused a 70% inhibition of protease activity and a 90% inhibition when the concentration was 1µM. The strong inhibition of the protease activity in the intestinal tract of H. hampei after addition of Pepstatin A, allowed us to identify this protease as an aspartic-type protease. Other results permitted us to classify this protease as Cathespin D given that when BSA was used as a substrate the enzyme only showed 20% of the total activity with respect to hemoglobin. Incubation of the   AI inhibitor from Phaseolus vulgaris with increasing amounts of this intestinal enzyme from the coffee berry borer, showed that the biological activity of the inhibitor was significantly reduced due to the proteolytic activity. This work constitutes the first electrophoretic evidence of   AI proteolysis of P. vulgaris by endogenous proteases from H. hampei.

VALENCIA -J., A., & ARBOLEDA-V., J. W. (2005). Digestion of the inhibitor AI by Hypothenemus hampei aspartic proteinases. Revista Colombiana De Entomología, 31(2), 117–121. https://doi.org/10.25100/socolen.v31i2.9430

APPLEBAUM, S. W. 1985. Biochemistry ofdigestion. Comprehensive Insect Physiology Biochemistry and Pharmacology 4: 279-311.

BARRET, A. J. 1977. Cathepsin D and other carboxyl proteinases from mammalian cells and tissues. Amsterdam, North-Holland. p. 209-248.

BIRK, Y.; HARPAZ, I.; ISHAAYA, I.; BONDI, A. 1962. Studies on the proteolytic activity of the beetles Tenebrio and Tribolium. Journal of Insect Physiology 8: 417-429.

BLANCO, L. A.; MARTÍNEZ, N. A.; SANDOVAL, L.; DELANO, J. 1996. Purification

and characterization of a digestive cathepsin D proteinase isolated fromTribolium castaneum larvae (Herbst). Insect Biochemistry and Molecular Biology 26(1): 95-100.

BONETE, M. J.; MANJON, A.; LLORCA, F.; IBORRA, J. Z. 1984. Acid proteinase activity in fishes II. Purification and characterization of Cathepsin B and D from Mujil auratus muscle. Comparative Biochemistry and Physiology 78B: 207-213.

BRADFORD, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Analytical Biochemistry 72: 248-254.

CAMPOS, F. A. P.; XAVIER-FILHO, J.; SILVA, C. P.; ARY, M. B. 1989. Resolution and partial characterization of proteinases and aamylases from midguts of larvae of the bruchid beetle Callosobruchus maculatus (F.). Comparative Biochemistry and Physiology 92B: 51-57.

GATEHOUSE, A. M. R.; BUTLER, K. J.; FENTON, K. A.; GATEHOUSE, J. A. 1985. Presence and partial characterization of a major proteolytic enzyme in the larval gut of Callosobruchus maculatus. Entomologia Experimentalis et Applicata 39: 279-286.

HOUSEMAN, J. G.; DOWNE, A. E. R. 1982. Characterization of an acidic proteinase from the posterior midgut of Rhodnius prolixus Stal (Hemiptera: Reduviidae). Insect Biochemistry 12(6): 651-655.

ISHIMOTO, M.; CHRISPEELS, M. J. 1996. Protective mechanism of the Mexican Bean Weevil against high levels of a-amylase inhibitor in the common bean. Plant Physiology. 111: 393-401.

ISHIMOTO, M.; KITAMURA, K. 1992. Tolerance to the seed a-amylase inhibitor by the two insect pests of the common bean, Zabrotes subfasciatus and Acanthoscelides obtectus (Coleoptera: Bruchidae). Applied Entomology and Zoology 27: 243-251.

JONGSMA, M. A.; BOLTER, C. 1997. The adaptation of insect to plant protease inhibitors. Journal of Insect Physiology 43(10): 885-895.

KITCH, L. W.; MURDOCK, L. L. 1986. Partial characterization of a major midgut tiol proteinase from larvae of Callosobruchus maculatus (F). Archives of Insect Biochemistry and Physiology 3: 561-576.

LEMOS, F. J.; CAMPOS, F. A. P.; SILVA, C. P.; XAVIER-FILHO, J. 1990. Proteinases and amylases of larval midgut of Zabrotes subfasciatus reared on cowpea (Vigna unguiculata) seeds. Entomologia Experimantalis et Applicata 56: 219-227.

LENNEY, J. F. 1975. Three yeast proteins that specifically inhibit yeast proteases A, B and C. Journal of Bacteriology 122: 1265-1273.

MURDOCK, L. L.; BROOKHART, G.; DUNN, P. E.; FOARD, D. E.; KELLY, S.; KITCH, L.; SHADE, R. E.; SHUCKLE, R. H.; WOLFSON, J. L. 1984. Cysteine digestive proteinases in Coleoptera. Comparative Biochemistry and Physiology 87B: 783-787.

MURDOCK, L. L.; BROOKHART, G.; DUNN, P. E.; FOARD, D. E.; KELLEY, S.; KITCH, L.; SHADE, R. E.; SHUKLE, R. H.; WOLFSON, J. L. 1987. Cysteine digestive proteinases in Coleoptera. Comparative Biochemistry and Physiology 87: 783-787.

MURPHY, S. T.; MOORE, D. 1990. Biological control of the coffee berry borer Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae), previous programs and possibilities for the future. Biocontrol News and Information 11: 107-117.

NORTH, M. J. 1982. Comparative biochemistry of the proteinases of eucaryotic microorganisms. Microbiology 46: 308-340.

OKASHA, A. Y. K. 1968. Effect of sub-lethal temperature on an insect, Rhodnius prolixus (Stal) III. Metabolic changes and their bearing on the cessation and delay of moulting. Journal of Experimental Biology 48: 475-486.

PRITCHETT, D. W.; YOUNG, S. Y.; GEREN, C. R. 1981. Proteolitic activity in the digestive fluid of larvae of Trichoplusia ni. Insect Biochemistry 11(5): 523-526.

REID, J. C. 1983. Distribution of the coffee berry borer Hypothenemus hampei, within Jamaica, following its discovery in 1978. Tropical pest management 29: 224-230.

SILVA, C. P.; XAVIER-FILHO, J. 1991. Comparison between the levels of aspartic and Cysteine proteinases of Callosobruchus maculatus (F) and Zabrotes subfasciatus (Boh) (Coleoptera: Bruchidae). Comparative Biochemistry and Physiology 99B: 529-533.

SMITH, E.; BIRT, L. M. 1971. Proteolitic activity during the metamorphosis of the blowfly, Lucila. Insect Biochemistry 2: 218-225.

VALENCIA, J. A.; A. E. BUSTILLO, G. A. OSSA.; CHRISPEELS, M. J. 2000. aAmylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biochemistry and Molecular Biology 30: 207-213.

VUNDLA, W. R. M.; BROSSARD, M.; PEARSON, D. J.; LABONGO, V. L. 1992. Characterization of aspartic proteinases from the gut of the Tick, Rhipicephalus appendiculatus Neuman. Insect Biochemistry Molecular Biology 22(4): 405-410.

WIEMAN, K. F.; NIELSEN, S. S. 1988. Isolation and partial characterization of a major gut proteinase from larval Acanthoscelides obtectus Say (Coleoptera: Bruchidae). Comparative Biochemistry and Physiology 89B: 419-426.

XU, G.; QIN, J. 1994. Extraction and characterization of midgut proteases from Heliothis armígera and H. assulta (Lepidoptera: Noctuidae) and their Inhibition by tannic acid. Journal of Economic Entomology 87(2): 334-338.