Main Article Content

Authors

The control of mosquito vectors of malaria is largely based on insecticide applications, either on the inside walls of dwellings or on treated nets. For that reason, the surveillance of insecticide resistance in these species is essential for the definition of plans and strategies of malaria control. The purpose of this study was to determine the diagnostic doses of several insecticides used in public health for the main vectors of malaria in Colombia: Anopheles darlingi, A. albimanus and A. nuneztovari, using the methodology of impregnated bottles developed by the Centers for Disease Control and Prevention. Natural populations of the three species, submitted to low or no insecticide pressure, were selected with which bioassays were conducted to determine baseline susceptibility. Diagnostic doses (insecticide concentration and diagnostic time), or saturation curves, were established for the insecticides lambda-cyhalothrin, deltamethrin, fenitrothion, malathion and DDT for the three vectors; cyfluthrin, permethrin and propoxur for A. albimanus and A. darlingi, and etofenprox and bendiocarb for A. darlingi. The diagnostic doses determined in these susceptible populations will allow an evaluation of the status of insecticide resistance of the main malaria vectors across their distribution in Colombia, strengthening the resistance surveillance system and facilitating decision making for a more appropriate use of insecticides to control malaria in the country.

FONSECA-GONZÁLEZ, I., CÁRDENAS, R., GÓMEZ, W., SANTACOLOMA, L., BROCHERO, H., OCAMPO, C., SALAZAR, M., MCALLISTER, J., BROGDON, W., & QUIÑONES, M. (2010). Diagnostic doses for monitoring insecticide resistance of malaria vectors in Colombia. Revista Colombiana De Entomología, 36(1), 54–61. https://doi.org/10.25100/socolen.v36i1.9120

BROGDON, W. G.; MCALLISTER, J. C. 1998. Simplification of adult mosquito bioassays through use of time-mortality determinations in glass bottles. Journal of the American Mosquito Control Association 14 (2): 159-164.

BROGDON, W. G.; MCALLISTER, J. C.; CORWIN, A. M.; CORDON-ROSALES, C. 1999. Independent selection of multiple mechanisms for pyrethroid resistance in Guatemalan Anopheles albimanus (Diptera: Culicidae). Journal of Economic Entomology 92 (2): 298-302.

FARAN, M.; LINTHICUM, K. J. 1981. A handbook of the Amazonian species of Anopheles (Nyssorhynchus) (Diptera: Culicidae). Mosquito Systematics 13: 1-81.

FONSECA-GONZÁLEZ, I.; QUIÑONES, M.L; MCALLISTER, J.; BROGDON, W. G. 2009. Mixed-function oxidases and esterases associated with cross-resistance between DDT and lambda-cyhalothrin in Anopheles darling Root, 1926 populations from Colombia. Memórias do Instituto Oswaldo Cruz 104 (1): 18-26.

GUILLET, P. 2006. Pyrethroid resistance in malaria vectors: Operational implications in Africa. Public Health, Bayer Environmental Science Journal 18: 16-23.

LINTHICUM, K. J. 1988. A revision of the Argyritarsis Section of the subgenus Nyssorhynchus of Anopheles. Mosquito Systematics 20: 98-271.

NAJERA, J. A.; ZAIM, M. 2002. Malaria vector control. Decision making criteria and procedures for judicious use of insecticides. World Health Organization. WHO/CDS/WHOPES/2002.5 Rev.1. 106 p.

OLANO, V. A.; BROCHERO, H. L.; SAÉNZ, R.; QUIÑONES, M. L.; MOLINA, J. 2001. Mapas preliminares de la distribución de especies de Anopheles vectores de malaria en Colombia. Biomédica 21: 402-408.

OMS. 1994. Una estrategia mundial para combatir el paludismo. Organización Mundial de la Salud. Ginebra. 44 p.

QUIÑONES, M. L.; SUÁREZ, M. F.; FLEMING, G. A. 1987. Estado de la susceptibilidad al DDT de los principales vectores de la malaria en Colombia y su implicación epidemiológica. Biomédica 7: 81-86.

QUIÑONES, M. L.; RUIZ, F.; CALLE, D.; HARBACH, R. E.; ERAZO, H. F.; LINTON, Y. M. 2006. Incrimination of Anopheles (Nyssorhynchus) rangeli and An. (Nys.) oswaldoi as natural vectors of Plasmodium vivax in Southern Colombia. Memórias do Instituto Oswaldo Cruz 101 (6): 617-623.

RUIZ, F.; QUIÑONES, M. L.; ERAZO, H. F.; CALLE, D. A.; ALZATE, J. F.; LINTON, Y. M. 2005. Molecular differentiation of Anopheles (Nyssorhynchus) benarrochi and An. (N.) oswaldoi in Southern Colombia. Memórias do Instituto Oswaldo Cruz 100 (2): 155-160.

SERVICE, M. W. 1976. Mosquito ecology Field sampling methods. Applied Science Publishers Ltd., London. 583 p.

SIVIGILA. 2007. Protocolo de Malaria. Ministerio de la Protección Social, Instituto Nacional de Salud. Malaria-2007_sivigila_INS, Bogotá. 21 p.

SUÁREZ, M. F.; QUIÑONES, M. L.; PALACIOS, J. D.; CARRILLO, A. 1990. First record of DDT resistance in Anopheles darlingi. Journal of the American Mosquito Control Association 6: 72-74.

VERSCHUEREN, C. 2006. Why effective insecticide resistance management is important? In Public Health Journal, Bayer Environmental Science 18: 5-7.

WORLD HEALTH ORGANIZATION. 1975. Manual on practical entomology in Malaria. Part II. Methods and Techniques. Geneva. 87 p.

WORLD HEALTH ORGANIZATION. 1981. Resistance of vectors and reservoirs of disease to pesticides. Technical Report Series No 737. Geneva. 87 p.

ZAIM, M.; JAMBULINGAM, P. 2004. Global insecticide use for vector-borne disease control. WHO/CDS/WHOPES/ GCDPP/2004.9. 88 p.