Main Article Content

Authors

The degree of resistance of a Tetranychus urticae population, from production greenhouse roses, was determined for five miticides from different toxicological groups in comparison to a laboratory line. The presence of enzymes related to that resistance was also evaluated. Several bioassays were conducted on the laboratory line to establish the slope of the concentration /mortality relationship. Afterwards, the value of LC90 was selected and doubled to obtain a diagnostic concentration, in such a way that applying it to the field line would determine the degree of resistance. Lastly, biochemical tests were conducted to detect enzymes related to the resistance. The highest levels of α and β-esterase and oxidases were presented in the field population. These results suggest that α and β-esterase and oxidases are involved in the resistance of the population studied

LANDEROS, J., AIL, C. E., CERNA, E., OCHOA, Y., GUEVARA, L., & AGUIRRE, L. A. (2010). Susceptibility and resistance mechanisms of Tetranychus urticae (Acariformes: Tetranychidae) in greenhouse roses. Revista Colombiana De Entomología, 36(1), 5–9. https://doi.org/10.25100/socolen.v36i1.9110

ABBOTT, W. S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265-267.

ARGENTINE, J. A.; CLARK, J. M. 1990. Selection for abamectin resistance in Colorado potato beetle (Coleoptera: Chrysomelidae). Pesticide Science 28: 17-24.

BISSET, J. A.; RODRÍGUEZ, M. M.; SOCA, A. 1998. Cross-resistance to malathion in cuban Culex quinquefasciatus induced by larval selection with deltamethrin. Journal American Mosquito Control Association 12: 109-12.

BRADFORD, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Annals of Biochemistry 72: 248-254.

BROGDON, W. G. 1984. Mosquito protein microassay-I, protein determinations from small portions of single-mosquito homogenates. Comparative Biochemistry Physiology 79: 457-459.

BROGDON, W. G. 1988. Microassay of acetylcholinesterase activity in small portions of single mosquito homogenates. Comparative Biochemistry and Physiology 90: 145-150.

BROGDON, W. G.; DICKINSON, C. M. 1983. A microassay system for measuring esterase activity and protein concentration in small samples and in high-pressure liquid chromatography eluate fractions. Analytical Biochemistry 131: 499-503.

BROGDON, W. G.; BARBER. 1990. Microplate assay of glutathione S-transferase activity for resistance detection in singlemosquito triturates. Comparative Biochemistry and Physiology 96: 339-342.

BROGDON, W. G.; MCALLISTER, J. C.; VULULE, J. 1997. Hemeperoxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. Journal of the American Mosquito Control Association 13: 233-237.

CARBONARO, M. A.; MORELAND, D. E.; EDGE, V. E.; MOTOYAMA, N.; ROCK G. C.; DAUTERMAN, W. 1986. Studies on the mechanisms of cyhexatin resistance in the twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology 79: 576-579.

CLARK, A. G.; SHAMAN, N. A.1984.Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S-transferase. Pesticide Biochemistry and Physiology 22: 249-261.

CLARK, J. M.; SCOTT, J. G.; CAMPOS, F.; BLOOMQUIST, J. R. 1994. Resistance to avermectins: extent, mechanisms and management implications. Annual Review of Entomology 40: 1-30.

DENNEHY, T. J.; GRANETT, J.; LEIGH, T. F. 1983. Relevance of slide-dip and residual bioassay comparisons to detection of resistance in spider mites. Journal of Economic Entomology 76: 12251230.

DENNEHY, T. J.; GRAFTON-CARDWELL, E. E.; GRANETT, J.; BARBOUR, K. 1987. Practitioner assessable bioassay for detection of dicofol resistance in spider mites (Acari: Tetranychidae). Journal of Economic Entomology 80: 998-1103.

DEVINE, G. J.; BARBER, M.; DENHOLM, I. 2001. Incidence and inheritance of resistance to meti-acaricides in European strains of the two-spotted spider mite (Tetranychus urticae) (Acari: Tetranychidae). Pest Management Science 57: 443-448.

FINNEY, D. J. 1971. Probit analysis. 3rd ed. Cambridge University Press.Cambridge

GRAFTON-CARDWELL, E. E.; HOY, M. A. 1983. Comparative toxicity of avermectina B1 to the predator Metaseiulus occiden­ talis (Nesbitt) (Acari: Phytoseiidae) and the spider mites Tetranychus urticae Koch and Panonychus ulmi (Koch) (Acari: Tetranychidae). Journal of Economic Entomology 76: 12161220.

GEORGHIOU, G. P. 1965. Genetics studies on insecticide resistance. Advanced Pest Control Resesarch 6: 171.

GOULD, H. J. 1987. Protected crops, pp: 404-405. In: Burn, A. J.; Croaker, T. H.; Jepson P. (Eds.). Integrated Pest Management. Academic Press, New York, USA.

HEMINGWAY, J.; KARUNARATNE, S. 1998. Mosquito carboxylesterases: A review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology 12: 1-12.

HERNE, D. H. C.; BROWN, A. W. A. 1969. Inheritance and biochemistry of OP-resistance in a New York strain of the twospotted spider mite. Journal of Economic Entomology 62: 205209.

HOY, M. A.; CONLEY, J. 1987. Selection for abamectin resistance in Tetranychus urticae and T. pacificus (Acari: Tetranychidae). Journal of Economic Entomology 80: 221-225.

KIM, M.; SHIN, D.; CHO, K. 2004. An assessment of the chronic toxicity of fenpyroximate and pyridaben to Tetranychus urticae using a demographic bioassay. Applied Entomology 39 (3): 401-409.

LAGUNES-TEJADA, A.; VILLANUEVA-JIMÉNEZ, J. A. 1994. Toxicología y manejo de insecticidas. Colegio de Postgraduados en Ciencias Agrícolas, Montecillo Estado de México, México. 264 p.

LANDEROS, J.; MORA, N.; BADII, M.; CERDA, P. A.; FLORES, A. E. 2002. Effect of subletal concentrations of avermectina on population parameters of Tetranychus urticae on strawberry. Southwestern. Entomologist 27: 283-289.

MATSUMURA, F.; VOSS, G. 1964. Mechanism of malathion and parathion resistance in the twospotted spider mite, Tetranychus urticae. Journal of Economic Entomology 57: 911-917.

MCCUTCHEN, B. F.; PLAPP, F. W., NEMIC, S. J.; CAMPANHOLA, C. 1989. Developmente of diagnostic monitoring techniques for larval pyrethroid resistance in Heliothis spp. (Lepidoptera: Noctuidae) in cotton. Journal of Economic Entomology 82: 1502-1507.

MOTOYAMA, N.; DAUTERMAN, W. C. 1980. Glutathione Stransferase: their role in the metabolism of organophosphorous insecticides. Reviews in Biochemical Toxicology 2: 49-69.

NARAHASHI, T. 1983. Resistance to insecticides due to reduced sensitivity of the nervous system, pp: 333-351. In: Georghiou, G.; Saito, T. (Eds.). Pest resistance to pesticides. Plenum press New York and London.

RILEY, D. G.; TAN, W. J.; WOLFENBARGER, D. 2000. Activities of enzymes associated with inheritance of bifenthrin resistance in the silverleaf whitefly, Bemisia argentifolii. Southwestern Entomologist 25: 201-211.

SAITO, T.; TABATA, K.; KOHNO, S. 1983. Mechanisms of acaricide resistance with emphasis on dicofol, pp: 429-444. In: Georghiou, G; Saito, T. (Eds.). Pest resistance to pesticides. Plenum press New York and London.

SUH, E.; KOH, S.; LEE, J.; SHIN, K.; CHO, K. 2006. Evaluation of resistance pattern to fenpyroximate and pyridaben in Tetrany­ chus urticae collected from greenhouses and apple orchards using lethal concentration-slope relationship. Experimental and Applied Acarology 38: 151-165.

VOSS, G.; MATSUMURA, F. 1964. Resistance to organophosphorus compounds in the two spotted spider mite: two different mechanisms of resistance. Nature 202: 319-320.

YANG, X.; MARGOLIES, D. C.; ZHU, K. Y.; BUSCHMAN, L. L. 2001. Host plant-induced changes in detoxification enzymes and susceptibility to pesticides in the twospotted spider mites (Acari: Tetranychidae). Journal of Economic Entomology 94: 381-387.

YANG, X.; BUSCHMAN, L. L.; ZHU, K. Y.; MARGOLIES, D. C. 2002. Susceptibility and detoxifying enzyme activity in two spider mite species (Acari: Tetranychidae) after selection with three insecticides Journal of Economic Entomology 95 (2): 399-406.

YU, S.; J. 1982. Host plant induction of glutathione S-transferase in the fall armyworm. Pesticide Biochemistry and Physiology 18: 101-106.