Susceptibility and resistance mechanisms of Tetranychus urticae (Acariformes: Tetranychidae) in greenhouse roses

Published: 15-01-2010

Main Article Content

Authors

The degree of resistance of a Tetranychus urticae population, from production greenhouse roses, was determined for five miticides from different toxicological groups in comparison to a laboratory line. The presence of enzymes related to that resistance was also evaluated. Several bioassays were conducted on the laboratory line to establish the slope of the concentration /mortality relationship. Afterwards, the value of LC90 was selected and doubled to obtain a diagnostic concentration, in such a way that applying it to the field line would determine the degree of resistance. Lastly, biochemical tests were conducted to detect enzymes related to the resistance. The highest levels of α and β-esterase and oxidases were presented in the field population. These results suggest that α and β-esterase and oxidases are involved in the resistance of the population studied

1.
LANDEROS J, AIL CE, CERNA E, OCHOA Y, GUEVARA L, AGUIRRE LA. Susceptibility and resistance mechanisms of Tetranychus urticae (Acariformes: Tetranychidae) in greenhouse roses. Rev. Colomb. Entomol. [Internet]. 2010 Jan. 15 [cited 2026 Jan. 9];36(1):5-9. Available from: https://revistacolombianaentomologia.univalle.edu.co/index.php/SOCOLEN/article/view/9110

ABBOTT, W. S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265-267.

ARGENTINE, J. A.; CLARK, J. M. 1990. Selection for abamectin resistance in Colorado potato beetle (Coleoptera: Chrysomelidae). Pesticide Science 28: 17-24.

BISSET, J. A.; RODRÍGUEZ, M. M.; SOCA, A. 1998. Cross-resistance to malathion in cuban Culex quinquefasciatus induced by larval selection with deltamethrin. Journal American Mosquito Control Association 12: 109-12.

BRADFORD, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Annals of Biochemistry 72: 248-254.

BROGDON, W. G. 1984. Mosquito protein microassay-I, protein determinations from small portions of single-mosquito homogenates. Comparative Biochemistry Physiology 79: 457-459.

BROGDON, W. G. 1988. Microassay of acetylcholinesterase activity in small portions of single mosquito homogenates. Comparative Biochemistry and Physiology 90: 145-150.

BROGDON, W. G.; DICKINSON, C. M. 1983. A microassay system for measuring esterase activity and protein concentration in small samples and in high-pressure liquid chromatography eluate fractions. Analytical Biochemistry 131: 499-503.

BROGDON, W. G.; BARBER. 1990. Microplate assay of glutathione S-transferase activity for resistance detection in singlemosquito triturates. Comparative Biochemistry and Physiology 96: 339-342.

BROGDON, W. G.; MCALLISTER, J. C.; VULULE, J. 1997. Hemeperoxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. Journal of the American Mosquito Control Association 13: 233-237.

CARBONARO, M. A.; MORELAND, D. E.; EDGE, V. E.; MOTOYAMA, N.; ROCK G. C.; DAUTERMAN, W. 1986. Studies on the mechanisms of cyhexatin resistance in the twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology 79: 576-579.

CLARK, A. G.; SHAMAN, N. A.1984.Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S-transferase. Pesticide Biochemistry and Physiology 22: 249-261.

CLARK, J. M.; SCOTT, J. G.; CAMPOS, F.; BLOOMQUIST, J. R. 1994. Resistance to avermectins: extent, mechanisms and management implications. Annual Review of Entomology 40: 1-30.

DENNEHY, T. J.; GRANETT, J.; LEIGH, T. F. 1983. Relevance of slide-dip and residual bioassay comparisons to detection of resistance in spider mites. Journal of Economic Entomology 76: 12251230.

DENNEHY, T. J.; GRAFTON-CARDWELL, E. E.; GRANETT, J.; BARBOUR, K. 1987. Practitioner assessable bioassay for detection of dicofol resistance in spider mites (Acari: Tetranychidae). Journal of Economic Entomology 80: 998-1103.

DEVINE, G. J.; BARBER, M.; DENHOLM, I. 2001. Incidence and inheritance of resistance to meti-acaricides in European strains of the two-spotted spider mite (Tetranychus urticae) (Acari: Tetranychidae). Pest Management Science 57: 443-448.

FINNEY, D. J. 1971. Probit analysis. 3rd ed. Cambridge University Press.Cambridge

GRAFTON-CARDWELL, E. E.; HOY, M. A. 1983. Comparative toxicity of avermectina B1 to the predator Metaseiulus occiden­ talis (Nesbitt) (Acari: Phytoseiidae) and the spider mites Tetranychus urticae Koch and Panonychus ulmi (Koch) (Acari: Tetranychidae). Journal of Economic Entomology 76: 12161220.

GEORGHIOU, G. P. 1965. Genetics studies on insecticide resistance. Advanced Pest Control Resesarch 6: 171.

GOULD, H. J. 1987. Protected crops, pp: 404-405. In: Burn, A. J.; Croaker, T. H.; Jepson P. (Eds.). Integrated Pest Management. Academic Press, New York, USA.

HEMINGWAY, J.; KARUNARATNE, S. 1998. Mosquito carboxylesterases: A review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology 12: 1-12.

HERNE, D. H. C.; BROWN, A. W. A. 1969. Inheritance and biochemistry of OP-resistance in a New York strain of the twospotted spider mite. Journal of Economic Entomology 62: 205209.

HOY, M. A.; CONLEY, J. 1987. Selection for abamectin resistance in Tetranychus urticae and T. pacificus (Acari: Tetranychidae). Journal of Economic Entomology 80: 221-225.

KIM, M.; SHIN, D.; CHO, K. 2004. An assessment of the chronic toxicity of fenpyroximate and pyridaben to Tetranychus urticae using a demographic bioassay. Applied Entomology 39 (3): 401-409.

LAGUNES-TEJADA, A.; VILLANUEVA-JIMÉNEZ, J. A. 1994. Toxicología y manejo de insecticidas. Colegio de Postgraduados en Ciencias Agrícolas, Montecillo Estado de México, México. 264 p.

LANDEROS, J.; MORA, N.; BADII, M.; CERDA, P. A.; FLORES, A. E. 2002. Effect of subletal concentrations of avermectina on population parameters of Tetranychus urticae on strawberry. Southwestern. Entomologist 27: 283-289.

MATSUMURA, F.; VOSS, G. 1964. Mechanism of malathion and parathion resistance in the twospotted spider mite, Tetranychus urticae. Journal of Economic Entomology 57: 911-917.

MCCUTCHEN, B. F.; PLAPP, F. W., NEMIC, S. J.; CAMPANHOLA, C. 1989. Developmente of diagnostic monitoring techniques for larval pyrethroid resistance in Heliothis spp. (Lepidoptera: Noctuidae) in cotton. Journal of Economic Entomology 82: 1502-1507.

MOTOYAMA, N.; DAUTERMAN, W. C. 1980. Glutathione Stransferase: their role in the metabolism of organophosphorous insecticides. Reviews in Biochemical Toxicology 2: 49-69.

NARAHASHI, T. 1983. Resistance to insecticides due to reduced sensitivity of the nervous system, pp: 333-351. In: Georghiou, G.; Saito, T. (Eds.). Pest resistance to pesticides. Plenum press New York and London.

RILEY, D. G.; TAN, W. J.; WOLFENBARGER, D. 2000. Activities of enzymes associated with inheritance of bifenthrin resistance in the silverleaf whitefly, Bemisia argentifolii. Southwestern Entomologist 25: 201-211.

SAITO, T.; TABATA, K.; KOHNO, S. 1983. Mechanisms of acaricide resistance with emphasis on dicofol, pp: 429-444. In: Georghiou, G; Saito, T. (Eds.). Pest resistance to pesticides. Plenum press New York and London.

SUH, E.; KOH, S.; LEE, J.; SHIN, K.; CHO, K. 2006. Evaluation of resistance pattern to fenpyroximate and pyridaben in Tetrany­ chus urticae collected from greenhouses and apple orchards using lethal concentration-slope relationship. Experimental and Applied Acarology 38: 151-165.

VOSS, G.; MATSUMURA, F. 1964. Resistance to organophosphorus compounds in the two spotted spider mite: two different mechanisms of resistance. Nature 202: 319-320.

YANG, X.; MARGOLIES, D. C.; ZHU, K. Y.; BUSCHMAN, L. L. 2001. Host plant-induced changes in detoxification enzymes and susceptibility to pesticides in the twospotted spider mites (Acari: Tetranychidae). Journal of Economic Entomology 94: 381-387.

YANG, X.; BUSCHMAN, L. L.; ZHU, K. Y.; MARGOLIES, D. C. 2002. Susceptibility and detoxifying enzyme activity in two spider mite species (Acari: Tetranychidae) after selection with three insecticides Journal of Economic Entomology 95 (2): 399-406.

YU, S.; J. 1982. Host plant induction of glutathione S-transferase in the fall armyworm. Pesticide Biochemistry and Physiology 18: 101-106.

Downloads

Download data is not yet available.