Main Article Content

Authors

The products of vegetal origin were assessed for bioactive substances to reduce reliance on organophosphate and pyrethroid insecticides, to which insect populations have become resistant. For this reason the aim of this study was to assess whether the essential oils of Guatteria hispida, G. blepharophylla and G. friesiana have insecticidal effect against A. aegypti under laboratory conditions. Essential oils were extracted through hydrodistillation using a modified Clevenger apparatus and analyzed by Gas Chromatography (CG-FID), Gas Chromatography coupled to Mass Spectrometry (GC-MS), and Nuclear Magnetic Resonance (NMR). the bioassays were analyzed according to the Probit model. The GC-MS and NMR analyses confirmed that the leaves of G. blepharophylla have the caryophyllene oxide as their main component; in G. friesiana the -,and -eudesmols prevail, and in G. hispida and -pinene, and (E)-caryophyllene are the predominant compounds. the lethal concentrations LC50, LC95 and LC99, were respectively 85.74, 199.35 and 282.76ppm for G. hispida; 58.72, 107.6 and 138.37ppm for G. blepharophylla; and 52.6, 94.37 and 120.22ppm for G. friesiana. the oil extracted from G. friesiana presented the best insecticidal effect.

ACIOLE, S. D. G., PICCOLI, C. F., DUQUE-L., J. E., COSTA, E. V., NAVARRO-SILVA, M. A., MARQUES, F. A., SALES-MAIA, B. H. L. N., PINHEIRO, M. L. B., & REBELO, M. T. (2011). Insecticidal activity of three species of Guatteria (Annonaceae) against Aedes aegypti (Diptera: Culicidae). Revista Colombiana De Entomología, 37(2), 262–268. https://doi.org/10.25100/socolen.v37i2.9087

ADAMS, R. P. 2007. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publ. Corp., Carol Stream, IL.

BARERO, A. F.; MOLINA, J.; OLTRA, J. E.; ALTAREJOS, J.; BARRAGÁN, A.; LARA, A.; SEGURA, M. 1995. Stereochemistry of 14-hydroxy-b-caryophyllene and related compounds. Tetrahedron 51 (13): 3813-3822.

BIBER, P. A.; RONDAN, J. D.; LUDUEÑA, F. A.; GARDENAL, C. N.; ALMIRÓN, W. R. 2006. Laboratory evaluation of susceptibility of natural subpopulations of Aedes aegypti larvae to temephos. Journal of the American Mosquito Control Association 22 (3): 408-411.

BOYOM, F. F.; NGOUANA, V.; ZOLLO, P. H. A.; MENUT, C.; BESSIERE, J. M.; GUT, J.; ROSENTHAL, P. J. 2003. Composition and anti-plasmodial activities of essential oils from some Cameroonian medicinal plants. Phytochemistry 64 (7): 12691275.

CAVALCANTI, E. S. B.; MORAIS, S. M. M.; LIMA, M. A. A.; SANTANA, E. W. P. 2004. Larvicidal activity of essential oils from Brazilian plants against Aedes aegyti L. Memórias do Instituto Oswaldo Cruz 99 (5): 541-544.

CHÁVEZ, J. C. G.; ROLDÁN, J. R.; VARGA, F. V. 2005. Niveles de resistencia a dos insecticidas en poblaciones de Aedes aegypti (Diptera: Culicidae) del Perú. Revista Colombiana de Entomología 31 (1): 75-78.

COSTA, E. V.; PINHEIRO, M. L. B.; SILVA, J. R. A.; MAIA, B. H. L. N. S.; DUARTE, M. C. T.; AMARAL, A. C. F.; MACHADO, G. M. C.; LEONOR, L. L. 2009. Antimicrobial and antileishmanial activity of essential oil from the leaves of Annona foetida (Annonaceae). Química Nova 32 (1): 78-81.

COSTA, E. V.; TEIXEIRA, S. D.; MARQUES, F. A.; DUARTE, M. C. T.; DELARMELINA, C.; PINHEIRO, M. L. B.; TRIGO, J. R.; MAIA, B. H. L.N. S. 2008. Chemical composition and antimicrobial activity of the essential oils of the Amazon Guatteriopsis species. Phytochemistry 69 (9): 1895-1899.

COSTA, J. G. M.; RODRIGUES, F. F. G.; ANGÉLICO, E. C.; SILVA, M. R.; MOTA, M. L.; SANTOS, N. K. A.; CARDOSO, A. L. H.; LEMOS, T. L. G. 2005. Estudo químico-biológico dos óleos essenciais de Hyptis martiussii, Lippia sidoides e Syzigium aromaticum frente às larvas do Aedes aegypti. Revista Brasileira de Farmacologia 15 (4): 304-309.

ERKENS, R. H. J.; MAAS, P. J. M. 2008. The Guatteria group disentagled: Sinking Guatteriopsis, Guatteriella, and Heteropetalum into Guatteria. Rodriguésia 59 (2): 401-406.

FINNEY, D. J. 1971. Probit Analysis. Cambridge University Press, 3rd Edition. 174 p.

FLORES, A. E.; SALOMON, J. G.; FERNANDEZ, I. S.; PONCE, G. G.; LOAIZA, M. H. B.; LOZANDO, S.; BROGDON, W. B.; BLACK, W. C.; BEATY, B. 2006. Mechanisms of insecticide resistance in field populations of Aedes aegypti (L.) from Quintana Roo, Southern Mexico. Journal of the American Mosquito Control Association 22 (4): 672-677.

FURTADO, R. F.; LIMA, M. G. A.; NETO, M. A.; BEZERRA, J. N. S.; SILVA, M. G. V. 2005. Atividade larvicida de óleos essenciais contra Aedes aegypti L. (Diptera: Culicidae). Neotropical Entomology 34 (5): 843-847.

GERIS, R.; SILVA, I. G.; SILVA, H. H. G.; BARISON, A.; RODRIGUES-FILHO, E.; FERREIRA, A. G. 2008. Diterpenoids from Copaifera reticulata Ducke with larvicidal activity against Aedes aegypti (L.) (Diptera, Culicidae). Revista do Instituto de Medicina Tropical de São Paulo 50 (1): 25-28.

GUZMÁN, M. G.; GARCIA, G.; KOURÍ, G. 2006. El dengue y el dengue hemorrágico: prioridades de investigación. Revista Panamericana de Salud Pública 19 (3): 204-215.

HALL, M. C.; KINNS, M.; WELLS, E. J. 2005. Revised assignment of the 13C NMR spectra of a-and bpinenes. Organic Magnetic Resonance 21 (2): 108-110.

HOMBACH, J. 2007. Vaccines against dengue: a review of current candidate vaccines at advanced development stages. Revista Panamericana de Salud Pública 21 (4): 254-260.

ISMAN, M. B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51: 45-46.

KESSLER, P. J. A. 1993. Annonaceae. In: Kubitski, K., Rohwer, J. C. & Bittrich, V. (eds.). The families and genera of vascular plants II: Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin, 93129.

KROEGER, A.; NATHAN, M. B. 2006. Dengue: setting the global research agenda. The Lancet 368: 2193-2195.

LEE, S. G. 2002. a-Pinene and Myrtenol: Complete 1H NMR assignment. Magnetic Resonance in Chemistry 40: 311-312.

MAZZARRI, M. B.; GEORGHIOU, G. P. 1995. Characterization of resistance to organophosphate, carbamate, and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. Journal of the American Mosquito Control Association 11 (3): 315-322.

MONTELLA, I. S.; MARTINS, A .J.; VIANA-MEDEIROS, P. F.; LIMA, J. B. P.; BRAGA, I. A.; VALLE, D. 2007. Insecticide Resistance Mechanisms of Brazilian Aedes aegypti Populations from 2001 to 2004. American Journal of Tropical Medicine and Hygiene 77 (3): 467-477.

NAVARRO-SILVA, M. A.; MARQUES, F. A.; DUQUE, J. E. L. 2009. Review of semiochemicals that mediate the oviposition of mosquitoes: a possible sustainable tool for the control and monitoring of culicidae. Revista Brasileira de Entomologia 53 (1): 1-6.

PERIAGO, M. R.; GUZMÁN, M. G. 2007. Dengue y dengue hemorrágico en las Américas. Revista Panamericana de Salud Pública 21 (4): 187-191.

PING, L. T.; YATIMAN, R.; GEK, L. S. 2001. Susceptibility of adult field strains of Aedes aegypti and Aedes albopictus in Singapore to pirimiphos-methyl and permethrin. Journal of the American Mosquito Control Association 17 (2): 144-146.

PONLAWAT, A.; SCOTT, J. G.; HARRINGTON, L. C. 2005. Insecticide susceptibility of Aedes aegypti and Aedes albopictus across Thailand. Journal of Medical Entomology 42 (5): 821825.

RAWLINS, R. C. 1998. Spatial distribution of insecticide resistance in Caribbean populations of Aedes aegypti and its significance. Revista Panamericana de Salud Pública 4 (4): 243-251.

RAYMOND, M. 1985. Présentation d’un programme Basic d’analyse log-probit pour micro-ordinateur. Cahiers ORSTOM, série Entomologie Médicale et Parasitologie 22 (2): 117-121.

RODRÍGUEZ, M.; BISSET, J.; RUIZ, M.; SOCA, A. 2002. Crossresistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. Journal of Medical Entomology 39(6): 882-888.

SANTOS, R. P.; NUNES, E. P.; NACIMENTO, R. F.; SANTIAGO, G. M. P.; MENEZES, G. H. A.; SILVEIRA, E. R.; PESSOA, O. D. L. 2006. Chemical composition and larvicidal activity of the essential oil of Cordia leucomalloides and Cordia curassavica from the Northeast of Brazil. Journal of the Brazilian Chemical Society 17 (5): 1027-1030.

SIMAS, N. K.; LIMA, E. C.; CONCEIÇÃO, S. R.; KUSTER, R. M.; FILHO, A. M. O. 2004. Produtos naturais para o controle da transmissão da dengueatividade larvicida de Myroxylon balsamum (óleo vermelho) e de terpenóides e fenilpropanóides. Química Nova. 27 (1): 46-49.

VAN DEN DOOL, H.; KRATZ, P. D. J. A. 1963 Generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography A 11: 463-471.

WANDSCHEER, C. B.; DUQUE, J. E.; SILVA, M. A. N.; FUKUYAMA, Y.; WOHKE, J. L.; ADELMANN, J.; FONTANA, J. D. 2004. Larvicidal action of ethanolic extracts from fruit endocarps of Melia azedarach and Azadirachta indica against the dengue mosquito Aedes aegypti. Toxicon 44: 829-835.

WORLD HEALTH ORGANIZATION (WHO) 1992. Vector Resistance to pesticides. Fifteenth Report of The WHO Expert Committee on Vector Biology and Control. WHO Technical Report Series 818: 1-62.

WORLD HEALTH ORGANIZATION (WHO) 1981a. Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. Geneva. 6 p.

WORLD HEALTH ORGANIZATION (WHO) 1981b. Criteria and Meaning of Tests for Determining the Susceptibility or Resistance of Insects to Insecticides. Geneva. 4 p.