Main Article Content

Authors

Laboratory tests have been conducted in order to ascertain the possibility of using the bacteria Paenibacillus polymyxa expressing the Bacillus thuringiensis Cry1C toxin as a delivery system for Cry proteins that can be used to control the Spodoptera littoralis noctuid on cotton crops. We have studied the insecticidal activity on first instar larvae of S. littoralis and the persistence of the transformed strain of P. polymyxa, compared with the unmodified strain and B. thuringiensis var. aizawai naturally expressing the toxin. the results show that the transformed bacteria was more toxic (LC50=7.04x107 spore+crystal/ml) than B. thuringiensis var. aizawai (LC50=8.47x107 spore+crystal/ml). High levels of persistence into foliar tissues and insecticide activity were found, at least until 720 hours after foliar treatment. On the other hand, its application in the plant increases the amount of nitrogen and improves soil nitrogenase activity compared to untransformed P. polymyxa.

IBRAHIM-HUSSIEN, A., EL-GHAFFAR, N. I. A., EL-SAYED HATEM, A., ALDEBIS, H. K., & VARGAS-OSUNA, E. (2011). Insecticidal and nitrogen fixation activities of the transformed Paenibacillus polymyxa expressing Cry1C. Revista Colombiana De Entomología, 37(2), 192–197. https://doi.org/10.25100/socolen.v37i2.9073

BORA, R.; MURTY , M.; SHENBARGARATHAI, R.; SEKAR, V 1994. Introduction of Lepidopteran-specific insecticidal crystal protein gene of Bacillus thuringiensis subsp. kurstaki by conjugal transfer into a Bacillus megaterium strain that persists in the cotton phylloplane. Applied and Environmental Microbiology 60: 214-22.

BRAR, S.; VERMA, M.; TYAGI, R.; VALÉRO, J. 2006. Recent advances in downstream processing and formulations of Bacillus Thuringiensis based biopesticides. Process Biochemistry 41: 323-342.

BROCK, T. D.; MADIGAN, T. 1988. Biology of microorganisms. Prentice-Hall. Inc. Englewood, Cliffs. New Jersey. 835 p.

BROZA, M.; SNEH, B.; YAWETZ, A.; ORON, U.; HONIGMAN, A. 1984. Commercial application of Bacillus thuringiensis var. entomocidus for the control of Spodoptera littoralis Boisduval. Journal of Economic Entomology 77: 1530-1533.

CHIANG, A. S.; YEN, D. F.; PENG, W. K. 1986. Germination and proliferation of Bacillus thuringiensis in the gut of rice month larva Corcyca cephalica. Journal of Invertebrate Pathology 48: 96-99.

COHEN, E.; ROZEN, H.; JOSEPH, T.; BRAUN, S.; MARGULIES, L. 1991. Photoprotection of Bacillus thuringiensis var. kurstaki from ultraviolet irradiation. Journal of Invertebrate Pathology 57: 343-351.

CRICKMORE, N.; BONE, E.; WILLIAMS, J.; ELLAR, D. 1995. Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiology Letters 131: 249-254.

DENISE, K. Z.; PAT, N. B.; HARRIA, F.; ZHENGYA, K.; DANIEL, H.; PHYLLIS, I. A.; ANNE, V. K. 2002. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Applied and Environmental Microbiology 68: 2198-2208.

DULMAGE, H. T.; AIZAWA, K. 1982. Distribution of Bacillus thuringiensis in nature. (pp. 209-237). En: E. Kurstak (Ed.). Microbial and Viral Pesticide. Marcel Dekker. New York.

FINNEY, D. J. 1971. Probit analysis. Cambridge University Press, Cambridge, United Kingdom. 333 p.

FUJIMOTO, H.; ITOH, K.; YAMAMOTO, K.; KYOZUKA, J.; SHIMAMOTO, K. 1993. Insect resistant rice generated by introduction of a modified d-endotoxin gene of Bacillus thuringiensis. Biotechnology 11: 1151-1155.

GELERNTER, W. 1990. Targeting insectice-resistance markers: new developments in microbial based product. Managing resistance to agrochemicals: from fundamental research to practical strategies. American Chemical Society-USA 4221: 105-117.

GELERNTER, W.; SCHWAB, G.E. 1993. Transgenic bacteria, viruses, algae and other microorganisms as Bacillus thuringiensis toxin delivery systems (pp. 89-104). En: P.F. Entwistle, J.S. Cory, J. Bailey and S. Higgs (Eds.). Bacillus thuringiensis, an environmental biopesticide: theory and practice. John Willey. New York.

GÓMEZ DE AIZPURÚA, C.; ARROYO-VARELA, M. 1994. Principales noctuidos actuales de interés agrícola. Edigur. Madrid. 145 p.

GYANESHWAR, P.; JAMES, E. K.; MATHAN, N.; REDDY, P. M.;REINHOLD-HUREK, B.; LADHA, J. K. 2001. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens Journal of Bacteriology 183: 2634-2645.

HARDY, R.; BURNS, R.; HOLSTEN, T. 1973. Application of the acetylene reduction assay for the measurement of nitrogen fixation. Soil Biology and Biochemistry 5: 47-81.

HATEM, A. E.; ABDEL-SAMAD, S. S. M.; SALEH, H. A.; SOLIMAN, M. H. A.; HUSSIEN, A. I. 2009. Toxicological and physiological activity of plant extracts against Spodoptera littoralis (Boisduval) (Lepidoptra: Noctuidae) larvae. Boletín Sanidad Vegetal Plagas 35: 517-531.

HOFTE, H.; WHITELEY, H. R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiology Reviews 53: 242-255.

HOSNY, M. M.; TOPPER, C. P.; MOAWAD, G. M.; EI-SAADANY, G. 1986. Economic damage thresholds of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) on cotton in Egypt. Crop Protection 5: 100-104.

IBRAHIM, N. A. A.; OMAR, M. N. A. 2009. Expression of the insecticidal protein gene cry1C of Bacillus thuringiensis in plantcolonizing nitrogen fixing bacteria. Pest Technology 3: 45-49.

IBRAHIM, N. A. A.; SANNA. A. O.; MOHAMED, S. S.; MAGDY, A. M. 2008. Construction of a potent strain of Bacillus thuringiensis against the cotton leaf worm Spodoptera littoralis. German Journal of Agriculture and Forestry Research 58: 111-123.

IBRAHIM, N. A. A.; HASSAN, O. S.; OMAR, M. N. A. 2006. Protection of cotton plant (Gossypium barbadense) against lepidopteran insects due to colonization with nitrogen fixing bacteria expressing the Bacillus thuringiensis toxin gene Cry1C. Egypt Journal of Genetics and Cytology 35: 305-319.

JAMES, E. K., G. PRASAD, M. NATARAJAN, B. L. WILFREDO, L. BARRAQUIO, R. M. PALLAVOLA, O. L. FABIO; L. K. JAGDISH. 2002. Infection and colonization of rice seedling by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Molecular Plant-Microbe Interactions 15: 894-906.

JAMES, E. K.; OLIVARES, F. L. 1998. Infection and colonization of sugarcane and other graminaceous plants by endophytic diazotrophs. Critical Reviews in Plant Sciences 17: 77-119.

KALMAN, S.; KIEHNE, K. L.; COOPER, N.; REYNOSO, M. S; YAMAMOTO, T. 1995. Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Applied and Environmental Microbiology 61: 3063-3068.

LAMBERT , B.; PERFEROEN, M. 1992. Insecticide promise of Bacillus thuringiensis. Facts and mysteries about a successful biopesticide. Bioscience 42: 112-122.

LAMPEL, J.; CANTER, G.; DUMOCK, M.; KELLY, J.; ANDERSON, J.; URATANI, B. 1994. Integrative cloning, expression and stability of the cry1A(c) gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Applied and Environmental Microbiology 60: 501-508.

LEE, M. K.; CURT ISS, A.; ALCANTARA, E.; DEAN, D. H. 1996. Synergistic effect of the Bacillus thuringiensis toxins Cry1Aa and Cry1Ac on the gypsy moth, Lymantria dispar. Applied and Environmental Microbiology 62: 583-586.

NAVON, A.; WYSOKI, M.; KEREN, S. 1983. Potency and effect of Bacillus thuringiensis preparations against larvae of Spodoptera littoralis and Boarmia (Ascotis) selenaria. Phytoparasitica 11: 3-11.

NESTER, E.; THOMASHOW, L. S.; METZ, M.: GORDON, M. 2002. 100 years of Bacillus thuringiensis: A critical Scientific Assessment, American Academy of Microbiology, Washington, D. C. (www.asmusa.org/acasrc/aca1.htm).

OBUKOWICZ, M.; PERLAK, F.; KUSANO-KRETZMER, K.; MAYER, E.; BOLTEN, S.; WATRUD, L. 1986. Tn5-mediated

integration of the deltaendotoxin gene from Bacillus thuringiensis into the chromosome of root-colonizing pseudomonads. Journal of Bacteriology 168: 982-989.

PAGE, A. L.; MILLAR, R. H.; KEENY, D. R. 1982. Methods of soil analysis. American Agriculture Inc. Madison. 1159 p.

PERLAK, F. J.; FUCH, R. L.; DEAN, D. A.; MCPHERSON, S. L.; FISCHHOFF, D. A. 1991. Modification of the coding sequences enhances plant expression of insect control protein genes. Proceedings of the National Academy of Sciences of the United States 88: 3324-3338.

POITOUT, S.; BUES, R. 1974. Élevage de chenilles de vingt-huit espèces de lépidopteres Noctuidae et de deux espèces d’Arctiidae sur milieu artificiel simple. Particularités de l’élevage selon les espèces. Annales de Zoologie-Ecologie Animale 6: 431-441.

PUSZTAI, M; FAST, P.; GRINGORT EN, L.; KAPLAN, H.; LESSARD, T.; CAREY, P. R. 1991. The mechanism of sunlight-mediated inactivación of Bacillus thuringiensis crystals. Biochemistry Journal 273: 43-47.

RUSSELL, R. M.; ROBERTSON, J. L.; SAVIN, N. E. 1977. POLO: a new computer program for probit analysis. Bulletin of the Entomological Society of America 23: 209-213.

SANCHIS, V.; CHAUFAUX, J.; PAURON, D. 1994. A comparison and analysis of the toxicity and receptor binding properties of Bacillus thuringiensis CryIC delta-endotoxin on Spodoptera littoralis and Bombyx mori. FEBS Letters 353: 259-263.

SCHNEPF, E.; CRICKMORE, N.; VAN RIE, J.; LERECLUS, D.; BAUM, J.; FEITELSON, J. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews 62: 775-806.

SOMASEGARAN, P.; HOBEN, H. 1985. Methods in legumeRhizobium technology. University of Hawai. Niftal Project and Mircen. Hawai, 367 p.

STOCK, C.; MCLOUGHLIN, T.; KLEIN, J.; ADANG, M. 1990. Expression of Bacillus thuringiensis crystal protein gene in Pseudomonas cepacia 526. Canadian Journal of Microbiology 396: 879-884.

SUDHA, S. N.; JAYAKUMAR, R.; VAITHILINGAM, S. 1999. Introduction and expression of the cry1Ac gene of Bacillus thuringiensis in a cereal-associated bacterium, Bacillus polymyxa. Current Microbiology 38: 163-167.

THEODULOZ, C.; VEGA, A.; SALAZAR, M.; GONZÁLEZ, E.; MEZA-BASSO, L. 2003. Expression of a Bacillus thuringiensis d-endotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants (Lycopersicon esculentum, Mills). Journal of Applied Microbiology 94: 375-381.

TIEDJE, J.; COLWELL, R.; GROSSMAN, Y.; HODSON, R.; LENSKI, R.; MACK, R. 1989. The planned introduction of genetically engineered organisms: ecological considerations and recommendations. Ecology 70: 298-315.

WAALWIJK, C.; DULLEMANS, A.; MAAT, C. 1991. Construction of a bioinsecticidal rhizosphere isolate of Pseudomonas FEMS Microbiology Letters 77: 257-64.