Evaluation of new-generation insecticides for control of the coffee root mealybugs, Puto barberi (Hemiptera: Putoidae) and Dysmicoccus sp. (Hemiptera: Pseudococcidae)
Keywords:
Ammothamnus, Cymbopogon, dinotefuran, minerals, plant extracts, Pongamia, SophoraMain Article Content
In Colombia, mealybugs have become important common pests in coffee farming. The predominant species are Puto barberi (Hemiptera: Putoidae) and Dysmicoccus sp. (Hemiptera: Pseudococcidae). The objective of this research was to evaluate insecticides used to control these pests, which are not restricted for use in Colombia or coffee-buying countries. In the laboratory, 18 different formulations of insecticides, originating from mineral, biological, botanical, and chemical sources, were evaluated on both nymphs and adults of P. barberi. After 10 days of treatment, it was found that dinotefuran, pyriproxyfen + acetamiprid, cyantraniliprole, and a mixture of plant extracts from Cymbopogon citratus (DC) Stapf (Poales: Poaceae), Ammothamnus sp., and Pongamia pinnata (L.) Pierre (Fabales: Fabaceae) was effective in causing a mortality rate greater than 80 %. These products, along with spirotetramat, calcium hydroxide, and tiamentoxam (commercial control - CC), were then evaluated in a batch of naturally infested coffee plants by P. barberi and in coffee seedlings in a greenhouse that were artificially infested with Dysmicoccus sp. The study utilized a completely randomized design. The response variable was the number of live individuals per infested plant (LIPIP). On day 14 of treatment, only dinotefuran and the mixture of plant extracts showed statistically similar results to the CC, presenting 6.56 - 6.94 and 6.17 LIPIP for P. barberi. On days 30 and 60, Dysmicoccus sp. had 1.38 and 1.50 LIPIP with dinotefuran, statistically equal to 1.08 and 1.36 LIPIP of the CC; at 30 days, the mixture of plant extracts followed dinotefuran with 3.14 LIPIP. The effectiveness of these insecticides ranged from 73 % to 98 %; they are recommended for controlling coffee root mealybugs.
Ahmed, S., Tabassum, M. H., & Hassan, B. (2022). Evaluation of antitermite properties of wood extracts from Pongamia pinnata (L.) Pierre (Leguminosae) against subterranean termites. Anais da Academia Brasileira de Ciências, 94, e20190591. https://doi.org/10.1590/0001-3765202220190591
Alves, M. de S., Campos, I. M., Brito, D. de M. C. de, Cardoso, C. M., Pontes, E. G., & Souza, M. A. A. de. (2019). Efficacy of lemongrass essential oil and citral in controlling Callosobruchus maculatus (Coleoptera: Chrysomelidae), a post-harvest cowpea insect pest. Crop Protection, 119, 191-196. https://doi.org/10.1016/j.cropro.2019.02.007
Arcila-Moreno, A. (2015). Cómo modificar una aspersora de palanca para controlar las cochinillas de las raíces. Instructivo. Cenicafé. https://www.cenicafe.org/es/index.php/nuestras_publicaciones/cartillas/como_modificar_una_aspersora_de_palanca_para_controlar_las_cochinillas_de
Benavides Machado, P., Gil-Palacio, Z. N., Constantino Chuaire, L. M., Villegas García, C., & Giraldo-Jaramillo, M. (2013). Plagas del café: Broca, minador, cochinillas harinosas, arañita roja y monalonion. En Federación Nacional de Cafeteros (Ed.), Manual cafetero colombiano: Investigación y tecnología para la sostenibilidad de la caficultura (Vol. 2, pp. 215-260). https://doi.org/10.38141/cenbook0026_24 ESTE DOI NO FUNCIONA
Bryant Christie Inc. & CropLife International. (2024). Monitoreo de renovación de pesticidas de la UE. 30 de noviembre de 2024 (p.12). https://croplife.org/wp-content/uploads/2025/01/Monitoreo-de-Renovacion-de-Pesticidas-de-la-UE-SP-Diciembre-2024.pdf
Caballero, A., Ramos-Portilla, A. A., Gil, Z. N., & Benavides, P. (2018). Insectos escama (Hemiptera: Coccomorpha) en raíces de café de Norte de Santander y Valle del Cauca, Colombia y descripción de una nueva especie. Revista Colombiana de Entomología, 44(1), 120-128. http://www.scielo.org.co/scielo.php?pid=S0120-04882018000100120&script=sci_arttext
Caballero, A., Ramos-Portilla, A. A., Suárez-González, D., Serna, F., Gil, Z. N., & Benavides, P. (2019). Los insectos escama (Hemiptera: Coccomorpha) de raíces de café (Coffea arabica L.) en Colombia, con registros de hormigas (Hymenoptera: Formicidae) en asociación. Ciencia y Tecnología Agropecuaria, 20(1), 69-92. https://doi.org/10.21930/rcta.vol20_num1_art:1250
Cao, D., Zhang, Y., Fu, X., Wang, F., Wei, H., Zhou, Q., Huang, Y., & Peng, W. (2023). Uptake, translocation, and distribution of cyantraniliprole in a wheat planting system. Journal of Agricultural and Food Chemistry, 71(13), 5127-5135. https://doi.org/10.1021/acs.jafc.2c08802
Caparroz, K. C., Hata, F. T., Hoshino, A. T., Gibellato, G. H., Muniz, J. A. de O., Torres, M. E. dos A. de, & Pasini, A. (2023). Mortalidade e comportamento de Neopamera bilobata (Hemiptera: Rhyparochromidae) submetido ao inseticida à base de Sophora flavescens. Semina: Ciências Agrárias, 44(2), 911-920. https://doi.org/10.5433/1679-0359.2023v44n2p911
Gaskin, R. E., Horgan, D. B., van_Leeuwen, R. M., & Manktelow, D. W. (2010). Adjuvant effects on the retention and uptake of spirotetramat insecticide sprays on kiwifruit. New Zealand Plant Protection, 63, 60-65. https://doi.org/10.30843/nzpp.2010.63.6569
Gil Palacio, Z. N., Benavides Machado, P., & Villegas García, C. (2015). Manejo integrado de las cochinillas de las raíces del café. Avances Técnicos Cenicafé, 459, 1-8. https://www.cenicafe.org/es/publications/avt0459.pdf
Giraldo-Jaramillo, M. (2021). Cría en el laboratorio de Puto barberi Cockerell, 1895 (Hemiptera: Putoidae) sobre tubérculos de Solanum phureja. Revista Cenicafé, 72(2), 41-49. https://doi.org/10.38141/10778/72203
Góngora, C. E., Tapias, J., Jaramillo, J., Medina, R., González, S., Restrepo, T., Casanova, H., & Benavides, P. (2023). A novel caffeine oleate formulation as an insecticide to control coffee berry borer, Hypothenemus hampei, and other coffee pests. Agronomy, 13(6), 1554. https://doi.org/10.3390/agronomy13061554
Gratereaux B., W. V. (2009). Potencial del uso de hongos entomopatógenos para el control de cochinilla (Dysmicoccus brevipes) en producción orgánica de piña (Ananas comosus) [Magister Scientiae en Agricultura Ecológica, CATIE]. https://repositorio.catie.ac.cr/bitstream/handle/11554/3439/Potencial_del_uso_de_hongos_entomopatogenos.pdf?sequence=1&isAllowed=y
Gullan, P. J., & Martin, J. H. (2009). Sternorrhyncha (jumping plant lice, whiteflies, aphids, and scale insects). En Encyclopedia of insects (pp. 1079-1089). Academic Press.
Johnson, T. O., Ojo, O. A., Ikiriko, S., Ogunkua, J., Akinyemi, G. O., Rotimi, D. E., Oche, J.-R., & Adegboyega, A. E. (2021). Biochemical evaluation and molecular docking assessment of Cymbopogon citratus as a natural source of acetylcholine esterase (AChE)-targeting insecticides. Biochemistry and Biophysics Reports, 28, 101175. https://doi.org/10.1016/j.bbrep.2021.101175
Kodandaram, M., Kumar, Y. B., Rai, A., & Singh, B. (2016). An overview of insecticides and acaricides with new chemistries for the management of sucking pests in vegetable crops. Vegetable Science, 43(1), 1-12. https://isvsvegsci.in/index.php/vegetable/article/download/768/589
Kolupaeva, V. N., Kokoreva, A. А., Belik, A. A., & Pletenev, P. A. (2019). Study of the behavior of the new insecticide cyantraniliprole in large lysimeters of the Moscow State University. Open Agriculture, 4(1), 599-607. https://doi.org/10.1515/opag-2019-0057
Kumar, N., & Gupta, S. (2020). Persistence and degradation of cyantraniliprole in soil under the influence of varying light sources, temperatures, moisture regimes and carbon dioxide levels. Journal of Environmental Science and Health, Part B, 55(12), 1032-1040. https://doi.org/10.1080/03601234.2020.1808416
Lewis, K. A., Tzilivakis, J., Warner, D. J., & Green, A. (2024). Spirotetramat (Ref: BYI 08330) [Dataset]. PPDB: Pesticide Properties DataBase. Human and Ecological Risk Assessment: An International Journal. https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1119.htm
Łozowicka, B., Mojsak, P., Kaczyński, P., Konecki, R., & Borusiewicz, A. (2017). The fate of spirotetramat and dissipation metabolites in Apiaceae and Brassicaceae leaf-root and soil system under greenhouse conditions estimated by modified QuEChERS/LC–MS/MS. Science of the Total Environment, 603-604, 178-184. https://doi.org/10.1016/j.scitotenv.2017.06.046
Luppichini, P., Olivares P., N., & Montenegro M., J. (2013). Guía de campo: Plagas del palto y sus enemigos naturales. La Cruz, Chile: Boletín INIA - Instituto de Investigaciones Agropecuarias, no. 239. 108 p. https://bibliotecadigital.ciren.cl/bitstreams/6dfc678e-0a5a-4a54-98db-0fd8d17f737a/download
Ma, T., Yan, H., Shi, X., Liu, B., Ma, Z., & Zhang, X. (2018). Comprehensive evaluation of effective constituents in total alkaloids from Sophora alopecuroides L. and their joint action against aphids by laboratory toxicity and field efficacy. Industrial Crops and Products, 111, 149-157. https://doi.org/10.1016/j.indcrop.2017.10.021
Mani, M., & Shivaraju, C. (2016a). Damage. En M. Mani & C. Shivaraju (Eds.), Mealybugs and their management in agricultural and horticultural crops (pp. 117-122). Springer India. https://doi.org/10.1007/978-81-322-2677-2_
Mani, M., & Shivaraju, C. (2016b). Methods of Control. En M. Mani & C. Shivaraju (Eds.), Mealybugs and their management in agricultural and horticultural crops (pp. 209-222). Springer India. https://doi.org/10.1007/978-81-322-2677-2_
Manjushree, G., & Chellappan, M. (2019). Evaluation of entomopathogenic fungus for the management of pink mealybug, Dysmicoccus brevipes (Cockerell) (Hemiptera: Pseudococcidae) on pineapple in Kerala. Journal of Entomology and Zoology Studies, 7(1), 1215-1222. https://www.entomoljournal.com/archives/2019/vol7issue1/PartT/7-1-231-723.pdf
Miranda Vindas, A., & Blanco Metzler, H. (2013). Control de Dysmicoccus brevipes (Hemiptera: Pseudococcidae), en el fruto de piña, San Carlos, Costa Rica. Agronomía Costarricense, 37(1), 103-111. https://www.scielo.sa.cr/scielo.php?pid=S0377-94242013000100008&script=sci_arttext
Moustafa, M. A. M., Awad, M., Amer, A., Hassan, N. N., Ibrahim, E.-D. S., Ali, H. M., Akrami, M., & Salem, M. Z. M. (2021). Insecticidal activity of lemongrass essential oil as an eco-friendly agent against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects, 12(8), Article 8. https://doi.org/10.3390/insects12080737
Nauen, R., Reckmann, U., Thomzik, J., & Thielert, W. (2008). Biological profile of spirotetramat (Movento) - A new two way systemic (amimobile) insecticide against sucking pests. Bayer CropScience Journal, 61, 245-278.
Pinto, Z. T., Sánchez, F. F., Santos, A. R. dos, Amaral, A. C. F., Ferreira, J. L. P., Escalona-Arranz, J. C., & Queiroz, M. M. de C. (2015). Chemical composition and insecticidal activity of Cymbopogon citratus essential oil from Cuba and Brazil against housefly. Revista Brasileira de Parasitologia Veterinária, 24, 36-44. https://doi.org/10.1590/S1984-29612015006
Plata-Rueda, A., Martínez, L. C., Rolim, G. da S., Coelho, R. P., Santos, M. H., Tavares, W. de S., Zanuncio, J. C., & Serrão, J. E. (2020). Insecticidal and repellent activities of Cymbopogon citratus (Poaceae) essential oil and its terpenoids (citral and geranyl acetate) against Ulomoides dermestoides. Crop Protection, 137, 105299. https://doi.org/10.1016/j.cropro.2020.105299
Purkait, A., Mukherjee, A., Hazra, D. K., Roy, K., Biswas, P. K., & Kole, R. K. (2021). Encapsulation, release and insecticidal activity of Pongamia pinnata (L.) seed oil. Heliyon, 7(3), e06557. https://doi.org/10.1016/j.heliyon.2021.e06557
Rainforest Alliance. (2024). Annex Chapter 4: Farming Document SA-S-SD-22 Version 1.1 English (p.28). Rainforest Alliance. https://www.rainforest-alliance.org/resource-item/annex-chapter-4-farming/
Reena, Ram Singh, & Sinha Bk. (2012). Evaluation of Pongamia pinnata seed extracs as an insecticide against american bollworm Helicoverpa armigera (Hubner). International Journal of Agriculture Sciences, 4(6), 257-261. https://doi.org/10.9735/0975-3710.4.6.257-261
Riedel, S. (2022). 4C Pesticide Lists. Version 4.1 (p.14). https://www.4c-services.org/wp-content/uploads/2023/03/11.01.2023_4C-Pesticide-Lists.pdf
Ripa, R., Larral, P., Luppichini, P., Guajardo, V., & Rojas, S. (2008). Plagas del palto y cítricos en Chile, Capitulo 8: Chanchitos blancos. En Manejo de plagas en paltos y cítricos (pp. 180-205). Colección Libros INIA - No 23.
Ruiz Goez, D. (2023). Acción acaricida de un extracto vegetal de producción comercial, sobre el control de la arañita roja (Oligonychus yothersi) en cultivo de Aguacate (Persea americana) Var. Hass. [Programa Agronomía, Universidad Nacional Abierta y a Distancia UNAD. Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente ECAPMA]. http://repository.unad.edu.co/handle/10596/57765
Santa-Cecília, L. V. C., Souza, B., Prado, E., de Souza, J. C., & Fornazier, M. J. (2007). Cochonilhas-farinhentas en cafeeiros: Reconhecimento e controle. Cicular Técnica EPAMIG, 8, 4.
Souza, B., Santa-Cecília, L. V. C., Prado, E., & Souza, J. C. de. (2008). Cochonilhas-farinhentas (Hemiptera: Pseudococcidae) em cafeeiros (Coffea arabica L.) em Minas Gerais. Coffee Science, Lavras, 3(2), 104-107. https://coffeescience.ufla.br/index.php/Coffeescience/article/download/80/163/355
Souza, J. C. de, Reis, P. R., Ribeiro, J. A., Santa-Cecília, L. V. C., & Silva, R. A. (2007). Chemical control of the coffee root mealybug Dysmicoccus texensis (Tinsley, 1900) in coffee plants ( Coffea arabica L.). Coffee Science, Lavras, 2(1), 29-37. https://sbicafe.ufv.br/server/api/core/bitstreams/04a38517-450c-49a6-9bbd-e138af6d1f18/content
Stepanycheva, E. A., Petrova, M. O., Chermenskaya, T. D., & Pavela, R. (2014). Prospects for the use of Pongamia pinnata oil-based products against the green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae). Psyche: A Journal of Entomology, 2014, e705397. https://doi.org/10.1155/2014/705397
Usharani, K., Naik, D., & Manjunatha, R. (2019). Pongamia pinnata (L.): Composition and advantages in agriculture: A review. Journal of Pharmacognosy and Phytochemistry, 8(3), 2181-2187. https://www.phytojournal.com/archives/2019/vol8issue3/PartAC/8-1-586-133.pdf
Uwamose, M. O., Nmor, J. C., Okulogbo, B. C., & Ake, J. E. (2017). Toxicity of lemon grass Cymbopogon citratus powder and methanol extract against rice weevil Sitophilus oryzae (Coleoptera: Curculionidae). Journal of Coastal Life Medicine, 5(3), 99-103. https://doi.org/10.12980/jclm.5.2017j6-279
Vásquez, O. L. (2000). Manejo de cochinilla (Dysmicoccus brevipes) en el cultivo de piña orgánica en la zona del Lago de Yojoa, Honduras [PhD Thesis, Escuela Agrícola Panamericana, Zamorano]. https://bdigital.zamorano.edu/bitstream/11036/2943/1/T1125.pdf
Villegas-García, C., & Benavides-Machado, P. (2011). Identificación de cochinillas harinosas en las raíces de café en departamentos cafeteros de Colombia. Revista Cenicafé, 62(1), 48-55. https://www.cenicafe.org/es/documents/Rev._62(1)._art_4._Cochinillas.pdf
Villegas-García, C., Zabala E., G. A., Ramos P., A. A., & Benavides-Machacho, P. (2009). Identificación y hábitos de cochinillas harinosas asociadas a raíces del café en Quindío. Revista Cenicafé, 60(4), 362-373. https://biblioteca.cenicafe.org/bitstream/10778/153/1/arc060%2804%29362-373.pdf

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain the copyright on their work and are responsible for the ideas expressed in them. Once a manuscript is approved for publication, authors are asked for a publication license for the term of legal protection, for all territories that allows the use, dissemination and disclosure of the same.