Main Article Content

Authors

This study explores the larvicidal potential of a hexane extract from Blepharis ciliaris against Culex pipiens mosquitoes, a known vector of various diseases. The study aimed to find an eco-friendly alternative to chemical insecticides. Promising results were obtained, with the extract showing significant larvicidal activity. The LC50, LC90, and LC95 values against C. pipiens were determined as 125.53, 190.5, and 198.76 µg/mL, respectively. Furthermore, histological observations using a light microscope revealed notable changes in the midgut structure of the treated larvae, including degradation of microvilli, degeneration, and protrusion of epithelial cells and peritrophic membrane, loss of nuclei, and irregular microvilli. These findings suggest that the hexane extract from B. ciliaris has the potential as a natural larvicidal agent against C. pipiens mosquitoes. The MTT assay results indicate that the tested extracts did not exhibit cytotoxic effects on Huh-7 cells, and no morphological changes were observed under light microscopy. The findings of this study suggest that B. ciliaris contains bioactive compounds that could serve as potential bio-larvicides for controlling C. pipiens vectors. Further research should be conducted to assess the efficacy of using this botanical insecticide in small-scale field trials to develop environmentally safe interventions for controlling C. pipiens populations.

Almekhlafi, F., Almohssin , A. Z. M., Abutaha, N., Al-Qahtni, A. H., Wadaan, M. A., & Al-Khalifa, M. S. (2024). Mosquito larvicidal and cytotoxic potentials of the different extracts of the aerial part of Blepharis ciliaris (Acanthaceae) against Culex pipiens (Diptera: Culicidae). Revista Colombiana De Entomología, 50(2). https://doi.org/10.25100/socolen.v50i2.13350

Abutaha, N. (2015). In vitro antiproliferative activity of partially purified Withania somnifera fruit extract on different cancer cell lines. Journal of BUON, 20, 625-630. https://pubmed.ncbi.nlm.nih.gov/26011359/

Abutaha, N., & Al-Mekhlafi, A. (2014). Evaluation of the safe use of the larvicidal fraction of Capparis cartilaginea Decne. Against Aedes caspius (Pallas) (Diptera: Culicidae) larvae. African Entomology, 22(4), 838-846. https://doi.org/10.4001/003.022.0402

Al-Mehmadi, R. M., & Al-Khalaf, A. A. (2010). Larvicidal and histological effects of Melia azedarach extract on Culex quinquefasciatus Say larvae (Diptera: Culicidae). Journal of King Saud University-Science, 22(2), 77-85. https://doi.org/10.1016/j.jksus.2010.02.004

Al-Mekhlafi, F. A., Abutaha, N., Al-Doaiss, A. A., Al-Keridis, L. A., Alsayadi, A. I., Mohamed, R. A. E. H., Muhammad, A. W., Khalid, E. I., & Al-Khalifa, M. S. (2021). Target and non-target effects of Foeniculum vulgare and Matricaria chamomilla combined extract on Culex pipiens mosquitoes. Saudi Journal of Biological Sciences, 28(10), 5773-5780.‏ https://doi.org/10.1016/j.sjbs.2021.06.024

Al-Sarar, A. S. (2010). Insecticide resistance of Culex pipiens (L.) populations (Diptera: Culicidae) from Riyadh city, Saudi Arabia: Status and overcome. Saudi Journal of Biological Sciences 17(2), 95-100. https://doi.org/10.1016/j.sjbs.2010.02.001

Beier, J. C., Keating, J., Githure, J. I., Macdonald, M. B., Impoinvil, D. E., & Novak, R. J. (2008). Integrated vector management for malaria control. Malaria Journal, 7, 1-10. https://doi.org/10.1186/1475-2875-7-S1-S4

Benelli, G., Jeffries, C. L., & Walker, T. (2016). Biological control of mosquito vectors: past, present, and future. Insects, 7(4), 52. https://doi.org/10.3390/insects7040052

Bhutkar, P. M., Suganthi, V., Bhutkar, M. V., & Kothai, R. (2019). A Review on Scientific Studies on Genus Blepharis with special reference to B. maderaspatensis. National Journal of Basic Medical Sciences, 9(4), 160-167.

Bucar, F., Wube A., & Schmid, M. (2013). Natural product isolation–how to get from biological material to pure compounds. Natural Product Reports, 30(4), 525-545. https://doi.org/10.1039/c3np20106f

Caesar, L. K. & Cech, N. B. (2019). Synergy and antagonism in natural product extracts: when 1+ 1 ,does not equal 2. Natural Product Reports, 36(6), 869-888. https://doi.org/10.1039/C9NP00011A

Christophers, S. (1960). Aedes aegypti (L.) the yellow fever mosquito: Its life history, bionomics and structure. Cambridge University Press.

Dirar, A. I., Adhikari-Devkota, A., Kunwar, R. M., Paudel, K. R., Belwal, T., Gupta, G., Chellappan, D. K., Hansbro, P. M., Dua, K., & Devkota, H. P. (2021). Genus Blepharis (Acanthaceae): A review of ethnomedicinally used species, and their phytochemistry and pharmacological activities. Journal of Ethnopharmacology, 265, 113255. https://doi.org/10.1016/j.jep.2020.113255

El-Shanawany, M. A., Sayed, H. M., Ibrahim, S. R., Fayed, M. A., Radwan, M. M., & Ross, S. A. (2013). A new isoflavone from Blepharis ciliaris of an Egyptian origin. Medicinal Chemistry Research, 22, 2346-2350. https://doi.org/10.1007/s00044-012-0228-2

Gusmão, D. S., Páscoa, V., Mathias, L., Vieira, I. J. C., Braz-Filho, R., & Lemos, F. J. A. (2002). Derris (Lonchocarpus) urucu (Leguminosae) extract modifies the peritrophic matrix structure of Aedes aegypti (Diptera: Culicidae). Memórias do Instituto Oswaldo Cruz, 97(3), 371-375. https://doi.org/10.1590/S0074-02762002000300017

Hejna, M., Dell’Anno, M., Liu, Y., Rossi, L., Aksmann, A., Pogorzelski G., & Jóźwik, A. (2024). Assessment of the antibacterial and antioxidant activities of seaweed-derived extracts. Scientific Reports, 14, 21044. https://doi.org/10.1038/s41598-024-71961-8

Imam, H., Zarnigar, Sofi, G., & Seikh, A. (2014). The basic rules and methods of mosquito rearing (Aedes aegypti). Tropical Parasitology, 4(1), 53. https://pubmed.ncbi.nlm.nih.gov/24754030/

Karunamoorthi, K., & Sabesan, S. (2013). Insecticide resistance in insect vectors of disease with special reference to mosquitoes: a potential threat to global public health. Health Scope, 2(1), 4-18. https://doi.org/10.17795/jhealthscope-9840

Lee, S.-H., Do, H.-S., & Min, K.-J. (2015). Effects of essential oil from Hinoki cypress, Chamaecyparis obtusa, on physiology and behavior of flies. PloS one, 10(12), e0143450. https://doi.org/10.1371/journal.pone.0143450

Mahboubi, M., Haghi, G., Kazempour, N., & Hatemi, A. R. (2013). Total phenolic content, antioxidant and antimicrobial activities of Blepharis edulis extracts. Songklanakarin Journal of Science & Technology, 35(1), 11-16.

Nauen, R. (2007). Insecticide resistance in disease vectors of public health importance. Pest Management Science: formerly Pesticide Science, 63(7), 628-633. https://doi.org/10.1002/ps.1406

Piedra, L. A., Rodriguez, M. M., Lopez, I., Ruiz, A., Martinez, L. C., Garcia, I., Rey, J., & Bisset, J. A. (2023). Insecticide resistance status of Aedes albopictus (Diptera: Culicidae) populations from Cuba. Journal of Medical Entomology, 60(3), 487-493. https://doi.org/10.1093/jme/tjac189

Piplani, M., Bhagwat, D. P., Singhvi, G., Sankaranarayanan, M., Balana-Fouce, R., Vats, T., & Chander, S. (2019). Plant-based larvicidal agents: An overview from 2000 to 2018. Experimental Parasitology, 199, 92-103. https://doi.org/10.1016/j.exppara.2019.02.014

Procopio, F. A., Fromentin, R., Kulpa, D. A., Brehm, J. H., Bebin, A.-G., Strain, M. C., Richman, D. D., O'Doherty, U., Palmer, S., Hecht, F. M., Hoh, R., Barnad, J. O., Miller, M. D., Hazuda, J. D., Deeks, S. G., & Sékaly, R. P. (2015). A novel assay to measure the magnitude of the inducible viral reservoir in HIV-infected individuals. EBioMedicine, 2(8), 874-883. https://doi.org/10.1016/j.ebiom.2015.06.019

Quintás Soriano, G., Castell, J. V., & Moreno Torres, M. (2023). The assessment of the potential hepatotoxicity of new drugs by in vitro metabolomics. Frontiers in Pharmacology, 14, 1-22. https://doi.org/10.3389/fphar.2023.1155271

Ramirez, T., Strigun, A., Verlohner, A., Huener, H.-A., Peter, E., Herold, M., Bordag, N., Mellert, W., Walk, T., Spitzer, M., Jiang, X., Sperber, S., Hofmann, T., Hartung, T., Kamp, H., & Ravenzwaay, B. (2018). Prediction of liver toxicity and mode of action using metabolomics in vitro in HepG2 cells. Archives of Toxicology, 92, 893-906. https://doi.org/10.1007/s00204-017-2079-6

Rattan, R. (2023). Bioactive Phytochemicals from Acanthaceae–Mini Review. Journal of Emerging Technologies and Innovative Research, 10(6), 580-585.‏ https://www.jetir.org/papers/JETIR2306860.pdf

Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Latha, L. Y. (2011). Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1), 1-10. https://doi.org/10.4314/ajtcam.v8i1.60483

Şengül Demirak, M. Ş., & Canpolat, E. (2022). Plant-based bioinsecticides for mosquito control: Impact on insecticide resistance and disease transmission. Insects, 13(2), 162. https://doi.org/10.3390/insects13020162

Senthil-Nathan, S. (2020). A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Frontiers in Physiology, 10, 1591. https://doi.org/10.3389/fphys.2019.01591

Shaw, W. R., & Catteruccia, F. (2019). Vector biology meets disease control: using basic research to fight vector-borne diseases. Nature Microbiology, 4(1), 20-34. https://doi.org/10.1038/s41564-018-0214-7

Sina, I., & Shukri, M. (2016). Larvicidal activities of extract flower Averrhoa bilimbi L. towards important species mosquito, Anopheles barbirostris (Diptera: Culicidae). International Journal of Zoological Research, 12(1), 25-31. https://doi.org/10.3923/ijzr.2016.25.31

Souto, A. L., Sylvestre, M., Tölke, E. D., Tavares, J. F., Barbosa-Filho, J. M., & Cebrián-Torrejón, G. (2021). Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules, 26(16), 4835. https://doi.org/10.3390/molecules26164835

Trinh, N. B., Satyal, P., Ngo, G. H., Le, T. T. T., Vo, T. T., Nguyen, V. H., Nguyen, H. H., Nguyen, T. T., & Setzer, W. N. (2023). Chemical composition, mosquito larvicidal and molluscicidal activities of Magnolia foveolata leaf essential oil. Biochemical Systematics and Ecology, 109, 104666. https://doi.org/10.1016/j.bse.2023.104666

Valdivieso-Ugarte, M., Gomez-Llorente, C., Plaza-Díaz, J., & Gil, Á. (2019). Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systematic review. Nutrients, 11(11), 2786. https://doi.org/10.3390/nu11112786

WHO. (2004). Global strategic framework for integrated vector management. https://www.who.int/publications/i/item/WHO-CDS-CPE-PVC-2004.10, (June 2014).

Yagoo, A., Milton, M. J., Vilvest, J., Johnson, I., & Balakrishna, K. (2023). Mosquito larvicidal, pupicidal and ovidical effects of the different extracts of the leaves of Peltophorum pterocarpum against Aedes aegypti and Culex quinquefasciatus. Future Journal of Pharmaceutical Sciences, 9(1), 32. https://doi.org/10.1186/s43094-023-00483-3

Yahia, H., Djebbar, F., Mahdi, D., & Soltani, N. (2023). Insecticidal activity of Eucalyptus globulus (Labill) essential oil against Culiseta longiareolata (M., 1838) (Diptera: Culicidae). Allelopathy Journal, 59(1). https://doi.org/10.26651/allelo.j/2023-59-1-1433

Received 2023-11-14
Accepted 2024-11-11
Published 2024-12-20

Funding data