Main Article Content

Authors

The implementation of microorganism-based control methods aims to ameliorate the harm caused by pests while simultaneously reducing the unwanted effects caused by synthetic pesticides. However, the interaction between biorational and conventional methods might cause a reciprocal reduction in the efficacy of both methods. Some studies report that pesticides may cause reductions in the pathogenicity of Beauveria bassiana strains and changes in the gut microbiome of some insect species. This is important because B. bassiana is used for fruit fly control, and gut microbiome is known to influence the quality of males reared for autocidal control. The aim of this work was to analyze the toxicity of the herbicide glyphosate and some insecticides on microorganisms used in the control of the fruit fly, Anastrepha obliqua: (1) the entomopathogenic fungus Beauveria bassiana, and (2) the gut microbiome of males of A. obliqua. The results showed that none of the pesticides caused acute toxicity on the evaluated microorganisms. Even though these results suggest that integrating these microorganisms under the current usage of the evaluated pesticides here is feasible, it is relevant to acknowledge that many other environmental variables might be involved. Therefore, field studies are required to complement the findings of this study. 

Sánchez, D., Campollo-Ovalle, A., Rodas-Hilerio, L. F., & Solórzano-Gordillo, E. de J. (2024). Effect of pesticides on Beauveria bassiana and gut microbiota used in biorational methods for the control of Anastrepha obliqua (Diptera: Tephritidae) . Revista Colombiana De Entomología, 50(2). https://doi.org/10.25100/socolen.v50i2.12982

Al-Ani, M. A. M., Hmoshi, R. M., Kanaan, I. A., & Thanoon, A. A. (2019). Effect of pesticides on soil microorganisms. Journal of Physics: Conference Series, 1294(7), 072007. https://doi.org/10.1088/1742-6596/1294/7/072007 DOI: https://doi.org/10.1088/1742-6596/1294/7/072007

Alizadeh, A., Samih, M. A., Khezri, M., & Riseh, R. S. (2007). Compatibility of Beauveria bassiana (Bals.) Vuill. with several pesticides. International Journal of Agriculture and Biology, 9(1), 31-34.

Anderson, T. E., & Roberts, D. W. (1983). Compatibility of Beauveria bassiana isolates with insecticide formulations used in colorado potato beetle (Coleoptera: Chrysomelidae) control. Journal of Economic Entomology, 76(6), 1437-1441. https://doi.org/https://doi.org/10.1093/jee/76.6.1437 DOI: https://doi.org/10.1093/jee/76.6.1437

Behar, A., Yuval, B., & Jurkevitch, E. (2008). Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. Journal of Insect Physiology, 54(9), 1377-1383. https://doi.org/10.1016/j.jinsphys.2008.07.011 DOI: https://doi.org/10.1016/j.jinsphys.2008.07.011

Celar, F. A., & Kos, K. (2016). Effects of selected herbicides and fungicides on growth, sporulation and conidial germination of entomopathogenic fungus Beauveria bassiana. Pest Management Science, 72(11), 2110-2117. https://doi.org/https://doi.org/10.1002/ps.4240 DOI: https://doi.org/10.1002/ps.4240

Chen, X.-M., Wang, X.-Y., Lu, W., & Zheng, X.-L. (2021). Use of Beauveria bassiana in combination with commercial insecticides to manage Phauda flammans (Walker) (Lepidoptera: Phaudidae): Testing for compatibility and synergy. Journal of Asia-Pacific Entomology, 24(2), 272-278. https://doi.org/10.1016/j.aspen.2021.01.016 DOI: https://doi.org/10.1016/j.aspen.2021.01.016

De La Rosa, W., Lopez, F. L., & Liedo, P. (2002). Beauveria bassiana as a pathogen of the Mexican fruit fly (Diptera: Tephritidae) under laboratory conditions. Journal of Economic Entomology, 95(1), 36-43. https://doi.org/10.1080/09588221.2021.1996396 DOI: https://doi.org/10.1603/0022-0493-95.1.36

DeLorenzo, M. E., Scott, G. I., & Ross, P. E. (2001). Toxicity of pesticides to aquatic microorganisms: A review. Environmental Toxicology and Chemistry: An International Journal, 20(1), 84-98. https://doi.org/10.1002/etc.5620200108 Deutscher, A. T., Chapman, T. A., Shuttleworth, L. A., Riegler, M., & Reynolds, O. L. (2019). Tephritid-microbial interactions to enhance fruit fly performance in sterile insect technique programs. BMC Microbiology, 19(1), 287. https://doi.org/10.1186/s12866-019-1650-0 DOI: https://doi.org/10.1186/s12866-019-1650-0

Dillon, R. J., & Dillon, V. M. (2003). The gut bacteria of insects: Nonpathogenic interactions. Annual Review of Entomology, 49(1), 71-92. https://doi.org/10.1146/annurev.ento.49.061802.123416 DOI: https://doi.org/10.1146/annurev.ento.49.061802.123416

Dimbi, S., Maniania, N. K., Lux, S. A., Ekesi, S., & Mueke, J. K. (2003). Pathogenicity of Metarhizium anisopliae (Metsch.) Sorokin and Beauveria bassiana (Balsamo) Vuillemin, to three adult fruit fly species: Ceratitis capitata (Weidemann), C. rosa var. fasciventris Karsch and C. cosyra (Walker) (Diptera: Tephritidae). Mycopathologia, 156(4), 375-382. https://doi.org/10.1023/B:MYCO.0000003579.48647.16 DOI: https://doi.org/10.1023/B:MYCO.0000003579.48647.16

Fernandes, É. K. K., Keyser, C. A., Rangel, D. E. N., Foster, R. N., & Roberts, D. W. (2010). CTC medium: A novel dodine-free selective medium for isolating entomopathogenic fungi, especially Metarhizium acridum, from soil. Biological Control, 54(3), 197-205. https://doi.org/10.1016/j.biocontrol.2010.05.009 DOI: https://doi.org/10.1016/j.biocontrol.2010.05.009

Gregg, P. C., Del Socorro, A. P., & Landolt, P. J. (2018). Advances in attract-and-kill for agricultural pests: beyond pheromones. Annual Review of Entomology, 63, 453-470. https://doi.org/10.1146/annurev-ento-031616-035040 DOI: https://doi.org/10.1146/annurev-ento-031616-035040

Gressel, J. (2018). Microbiome facilitated pest resistance: potential problems and uses. Pest Management Science, 74(3), 511-515. https://doi.org/https://doi.org/10.1002/ps.4777 DOI: https://doi.org/10.1002/ps.4777

Heimpel, G. E., & Mills, N. J. (2017). Biological control. Cambridge University Press. https://doi.org/10.1017/9781139029117 DOI: https://doi.org/10.1017/9781139029117

Hezakiel, H. E., Thampi, M., Rebello, S., & Sheikhmoideen, J. M. (2023). Biopesticides: A green approach towards agricultural pests. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-023-04765-7 DOI: https://doi.org/10.1007/s12010-023-04765-7

Khaeso, K., Andongma, A. A., Akami, M., Souliyanonh, B., Zhu, J., Krutmuang, P., & Niu, C.-Y. (2018). Assessing the effects of gut bacteria manipulation on the development of the oriental fruit fly, Bactrocera dorsalis (Diptera; Tephritidae). Symbiosis, 74(2), 97-105. https://doi.org/10.1007/s13199-017-0493-4 DOI: https://doi.org/10.1007/s13199-017-0493-4

Khun, K. K., Ash, G. J., Stevens, M. M., Huwer, R. K., & Wilson, B. A. L. (2021). Compatibility of Metarhizium anisopliae and Beauveria bassiana with insecticides and fungicides used in macadamia production in Australia. Pest Management Science, 77(2), 709-718. https://doi.org/10.1002/ps.6065 DOI: https://doi.org/10.1002/ps.6065

López-Manzanares, B., Martínez-Villar, E., Marco-Mancebon, V. S., & Pérez-Moreno, I. (2022). Compatibility of the entomopathogenic fungus Beauveria bassiana with etoxazole, spirodiclofen and spiromesifen against Tetranychus urticae. Biological Control, 169, 104892. https://doi.org/https://doi.org/10.1016/j.biocontrol.2022.104892 DOI: https://doi.org/10.1016/j.biocontrol.2022.104892

Marri, D., Gomez, D., Wilson, D. D., Billah, M., Yeboah, S., & Osae, M. (2018). Evaluation of the efficacy of a commercial formulation of Beauveria bassiana for the control of the invasive fruit fly Bactrocera dorsalis (Diptera: Tephritidae). Biopesticides International, 12(1), 9-19. https://pure.ug.edu.gh/en/publications/evaluation-of-the-efficacy-of-a-commercial-formulation-of-beauverMontoya, P., Flores, S., Campos, S., Liedo, P., & Toledo, J. (2020). Simultaneous use of SIT plus disseminator devices of Beauveria bassiana enhances horizontal transmission in Anastrepha ludens. Journal of Applied Entomology, 144(6), 509-518. https://doi.org/10.1111/jen.12766 DOI: https://doi.org/10.1111/jen.12766

Morjan, W. E., Pedigo, L. P., & Lewis, L. C. (2002). Fungicidal effects of glyphosate and glyphosate formulations on four Species of entomopathogenic fungi. Environmental Entomology, 31(6), 1206-1212. https://doi.org/https://doi.org/10.1603/0046-225X-31.6.1206 DOI: https://doi.org/10.1603/0046-225X-31.6.1206

Randika, J., Bandara, P., Soysa, H. S. M., Ruwandeepika, H. A. D., & Gunatilake, S. K. (2022). Bioremediation of pesticide-contaminated soil: a review on indispensable role of soil bacteria. Journal of Agricultural Sciences–Sri Lanka, 17(1), 19-43. https://doi.org/10.4038/jas.v17i1.9609 DOI: https://doi.org/10.4038/jas.v17i1.9609

Raza, M. F., Yao, Z., Bai, S., Cai, Z., & Zhang, H. (2020). Tephritidae fruit fly gut microbiome diversity, function and potential for applications. Bulletin of Entomological Research, 110(4), 423-437. https://doi.org/10.1017/S0007485319000853 DOI: https://doi.org/10.1017/S0007485319000853

Regar, R. K., Gaur, V. K., Bajaj, A., Tambat, S., & Manickam, N. (2019). Comparative microbiome analysis of two different long-term pesticide contaminated soils revealed the anthropogenic influence on functional potential of microbial communities. Science of the Total Environment, 681, 413-423. https://doi.org/10.1016/j.scitotenv.2019.05.090 DOI: https://doi.org/10.1016/j.scitotenv.2019.05.090

Reller, L. B., Weinstein, M., Jorgensen, J. H., & Ferraro, M. J. (2009). Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical Infectious Diseases, 49(11), 1749-1755. https://doi.org/https://doi.org/10.1086/647952 DOI: https://doi.org/10.1086/647952

Shahid, M., & Khan, M. S. (2022). Tolerance of pesticides and antibiotics among beneficial soil microbes recovered from contaminated rhizosphere of edible crops. Current Research in Microbial Sciences, 3, 100091. https://doi.org/10.1016/j.crmicr.2021.100091 DOI: https://doi.org/10.1016/j.crmicr.2021.100091

Shuttleworth, L. A., Khan, M. A. M., Osborne, T., Collins, D., Srivastava, M., & Reynolds, O. L. (2019). A walk on the wild side: gut bacteria fed to mass-reared larvae of Queensland fruit fly [Bactrocera tryoni (Froggatt)] influence development. BMC Biotechnology, 19, 1-11. https://doi.org/10.1186/s12896-019-0579-6 DOI: https://doi.org/10.1186/s12896-019-0579-6

Tamburini, G., Bommarco, R., Kleijn, D., van der Putten, W. H., & Marini, L. (2019). Pollination contribution to crop yield is often context-dependent: A review of experimental evidence. Agriculture, Ecosystems & Environment, 280, 16-23. https://doi.org/10.1016/j.agee.2019.04.022 DOI: https://doi.org/10.1016/j.agee.2019.04.022

Tijjani, A., Bashir, K. A., Mohammed, I., Muhammad, A., Gambo, A., & Musa, H. (2016). Biopesticides for pests control: A review. Journal of Biopesticides and Agriculture, 3(1), 6-13. https://www.mbbcollege.in/db/notes/416.pdf

Tkaczuk, C., & Majchrowska-Safaryan, A. (2019). The effect of herbicide use on the occurrence of entomopathogenic fungi in the soil of blackcurrant plantations. Applied Ecology & Environmental Research, 17(2). https://doi.org/10.15666/aeer/1702_30033011 DOI: https://doi.org/10.15666/aeer/1702_30033011

Toledo, J., Liedo, P., Flores, S., Montoya, P., Campos, S. E., & Villasenor, A. (2006). Use of Beauveria bassiana and Metarhizium anisopliae for fruit fly control: a novel approach 7. International symposium on fruit flies of economic importance: from basic to applied knowledge, Salvador, Brazil. https://www.osti.gov/etdeweb/biblio/21518534

Vega, F., Dowd, P., & Bartelt, R. (1995). Dissemination of microbial agents using an autoinoculative device and several insect species as vectors. Biological Control, 5(4), 545-552. https://doi.org/10.1006/bcon.1995.1064 DOI: https://doi.org/10.1006/bcon.1995.1064

Yuval, B., Ben‐Ami, E., Behar, A., Ben‐Yosef, M., & Jurkevitch, E. (2013). The Mediterranean fruit fly and its bacteria–potential for improving sterile insect technique operations. Journal of Applied Entomology, 137, 39-42. https://doi.org/10.1111/j.1439-0418.2010.01555.x DOI: https://doi.org/10.1111/j.1439-0418.2010.01555.x

Zhang, H., Zhang, Z., Song, J., Mei, J., Fang, H., & Gui, W. (2021). Reduced bacterial network complexity in agricultural soils after application of the neonicotinoid insecticide thiamethoxam. Environmental Pollution, 274, 116540. https://doi.org/https://doi.org/10.1016/j.envpol.2021.116540 DOI: https://doi.org/10.1016/j.envpol.2021.116540

Received 2023-05-30
Accepted 2024-07-04
Published 2024-12-12