Soil arthropod diversity, richness, and abundance in agroecological and conventional cotton production systems in Chaco, Argentina
Main Article Content
In Argentina, agroecology has grown in last years as a scientific paradigm that seeks to design and evaluate agroecosystems considering sustainability, complexity, and uncertainty. Diversity is a key factor in the design and management of production systems and a necessary component for conservation biological control and the reduction of agrochemicals use. Cotton (Gossypium hirsutum) crop in northern Argentina is usually managed with high load of agrochemicals: agroecological production arises as an alternative. This study evaluated the diversity, richness, and abundance of soil arthropods using pitfall traps in two experimental cotton plots under conventional (CONV) and agroecological management (AE) in Chaco, Argentina. AE system presented higher diversity and richness of predators compared with CONV, even when natural preparations were used for pest control. The phytophagous arthropods showed higher diversity and richness in CONV, even when pyrethroid insecticides were applied for pest control and preventively. The abundance in AE was lower for predators and higher for phytophagous arthropods. Agroecological production of cotton can be a tool that favors conservative biological control and an alternative for areas where protecting the health of farmers and the ecosystem is a priority.
Ahamad, A., & Kumar, J. (2023). Pyrethroid pesticides: An overview on classification, toxicological assessment and monitoring. Journal of Hazardous Materials Advances, 10, 100284. https://doi.org/10.1016/j.hazadv.2023.100284
Altieri, M., & Rosset, P. (2018). Agroecología: ciencia y política. Icaria.
Altieri, M., Nichols, C. I., & Fritz, M. A. (2005). Manage insects on your farm: a guide to ecological strategies. Sustainable agriculture network handbook series, Book 7. Retrieved January, 30, 2009.
Beaumelle, L., Auriol, A., Grasset, M., Pavy, A., Thiéry, D., & Rusch, A. (2021). Benefits of increased cover crop diversity for predators and biological pest control depend on the landscape context. Ecological Solutions and Evidence, 2(3), e12086. https://doi.org/10.1002/2688-8319.12086
Beretta, G. M., Deere, J. A., Messelink, G. J., Muñoz-Cárdenas, K., & Janssen, A. (2022). Review: Predatory soil mites as biocontrol agents of above- and below-ground plant pests. Experimental & Applied Acarology, 87(2-3), 143-162. https://doi.org/10.1007/s10493-022-00723-w
Castiglioni, E., García, L., Burla, J., Arbulo, N., & Fagúndez, C. (2017). Arañas y carábidos como potenciales bioindicadores en ambientes con distinto grado de intervención antrópica en el este uruguayo: Un estudio preliminar. Innotec, Ene-jun, 106-114.
Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45-67. https://doi.org/10.1890/13-0133.1
Chi, B., Zhang, D., & Dong, H. (2021). Control of cotton pests and diseases by intercropping: A review. Journal of Integrative Agriculture, 20(12), 3089-3100. https://doi.org/10.1016/S2095-3119(20)63318-4
Closs, G. P., Balcombe, S. R., & Shirley, M. J. (1999). Generalist Predators, Interaction Strength and Food-web Stability. In A.H. Fitter & D. Raffaelli (Eds.), Advances in Ecological Research (Vol. 28, pp. 93-126). Academic Press. https://doi.org/10.1016/S0065-2504(08)60030-6
de la Riva, E. G., Ulrich, W., Batáry, P., Baudry, J., Beaumelle, L., Bucher, R., Čerevková, A., Felipe-Lucia, M. R., Gallé, R., Kesse-Guyot, E., Rembiałkowska, E., Rusch, A., Seufert, V., Stanley, D., & Birkhofer, K. (2023). From functional diversity to human well-being: A conceptual framework for agroecosystem sustainability. Agricultural Systems, 208, 103659. https://doi.org/10.1016/j.agsy.2023.103659
Grismado, C., Ramírez, M., & Izquierdo, M. (2014). Araneae: Taxonomía, diversidad y clave de identificación de familias. En S. Roig Juñent, L.E. Claps, J.J. Morrone (Eds.), Biodiversidad de artrópodos Argentinos (Vol. 5., pp. 55-93). Sociedad Entomológica Argentina.
Heong, K. L., & Schoenly, K. G. (1998). Impact of insecticides on herbivore-natural enemy communities in tropical rice ecosystems. In Ecotoxicology: Pesticides and beneficial organisms (pp. 381-403). Springer US. https://delphacid.s3.amazonaws.com/5812.pdf
Krauss, J., Gallenberger, I., & Steffan-Dewenter, I. (2011). Decreased functional diversity and biological pest control in conventional compared to organic crop fields. PLoS ONE, 6(5), e19502. https://doi.org/10.1371/journal.pone.0019502
Lacava, M., García, L., Burla, J., Tambasco, R., Franco, V., & Viera, C. (2020). Abundancia y fenología de artrópodos depredadores en soja: análisis preliminar. Boletín de la Sociedad Zoológica del Uruguay, 29(2). https://doi.org/10.26462/29.2.12
Lang, A., Filser, J., & Henschel, J. R. (1999). Predation by ground beetles and wolf spiders on herbivorous insects in a maize crop. Agriculture, Ecosystems & Environment, 72(2), 189-199. https://doi.org/10.1016/S0167-8809(98)00186-8
Ledesma, L. L. (1996). Carta de suelos de la Estación Experimental Agropecuaria de Presidencia Roque Sáenz Peña (Chaco). EEA INTA Sáenz Peña. Chaco, Argentina
Luo, S., Naranjo, S. E., & Wu, K. (2014). Biological control of cotton pests in China. Biological Control, 68, 6-14. https://doi.org/10.1016/j.biocontrol.2013.06.004
Maciel, P. P. & Goytía, S. Y. (2022). Informe Anual 2022. Estación Meteorológica EEA Sáenz Peña. http://hdl.handle.net/20.500.12123/14354
Michalko, R., Mifková, T., & Pekár, S. (2021). Seasonal dynamics of prey utilization and individual specialization in a generalist spider in a pear orchard. Biological Control, 163, 104763. https://doi.org/10.1016/j.biocontrol.2021.104763
Ministerio de Agricultura, Ganadería y Pesca de la Nación. (2021). Estimaciones Agrícolas. https://www.magyp.gob.ar/sitio/areas/estimaciones/
Nicholls, C. I. (2010). Contribuciones agroecológicas para renovar las fundaciones del manejo de plagas. Agroecología, 5, 7-22.
Pearsons, K. A., & Tooker, J. F. (2017). In-field habitat management to optimize pest control of novel soil communities in agroecosystems. Insects, 8(3), Article 3. https://doi.org/10.3390/insects8030082
Quispe, R., Mazón, M., & Rodríguez-Berrío, A. (2017). Do refuge plants favour natural pest control in maize crops? Insects, 8(3), Article 3. https://doi.org/10.3390/insects8030071
R Core Team. (2023). R: A Language and Environment for Statistical Computing_ [Software]. https://www.R-project.org/
Sattler, C., Gianuca, A. T., Schweiger, O., Franzén, M., & Settele, J. (2020). Pesticides and land cover heterogeneity affect functional group and taxonomic diversity of arthropods in rice agroecosystems. Agriculture, Ecosystems & Environment, 297, 106927. https://doi.org/10.1016/j.agee.2020.106927
Sarandón, S. J. (2019). Potencialidades, desafíos y limitaciones de la investigación agroecológica como un nuevo paradigma en las ciencias agrarias. Revista de la Facultad de Ciencias Agrarias UNCuyo, 51(1), Article 1. https://revistas.uncu.edu.ar/ojs3/index.php/RFCA/article/view/2458
Snyder, W. E. (2019). Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biological Control, 135, 73-82. https://doi.org/10.1016/j.biocontrol.2019.04.017
Szinwelski, N., Fialho, V. S., Yotoko, K. S. C., Seleme, L. R., & Sperber, C. F. (2012). Ethanol fuel improves arthropod capture in pitfall traps and preserves DNA. ZooKeys, 196, 11-22. https://doi.org/10.3897/zookeys.196.3130
Tittonell, P. (2020). Assessing resilience and adaptability in agroecological transitions. Agricultural Systems, 184, 102862. https://doi.org/10.1016/j.agsy.2020.102862
Vidal, L. G., Vannuci-Silva, M., Alonso, M. B., Feo, M. L., Corcellas, C., Bisi, T. L., Flach, L., Fragoso, A. B. L., Lima Silva, F. J., Carvalho, V. L., de Meirelles, A. C. O., Domit, C., Barbosa, L. A., Cremer, M. J., Azevedo, A. F., Torres, J. P. M., Malm, O., Lailson-Brito, J., & Eljarrat, E. (2020). Pyrethroid insecticides along the Southwestern Atlantic coast: Guiana dolphin (Sotalia guianensis) as a bioindicator. Science of The Total Environment, 728, 138749. https://doi.org/10.1016/j.scitotenv.2020.138749
Accepted 2024-06-10
Published 2024-11-06
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain the copyright on their work and are responsible for the ideas expressed in them. Once a manuscript is approved for publication, authors are asked for a publication license for the term of legal protection, for all territories that allows the use, dissemination and disclosure of the same.