Main Article Content

Authors

Studies on the mosquito Anopheles darlingi Root (Diptera: Culicidae) are essential since it is the main vector of human malaria in the Brazilian Amazon. Photoperiod affects several biological variables of mosquitoes including motor, e.g., mating behavior, and oviposition and behavioral, e.g., consuming sugar and blood diets, activities, therefore, this work investigated the effect of different photoperiods on the biology of this species. Mosquitoes were reared under three different treatments: (i) 12 L:12 D, (ii) 24 L:0 D (constant light), and (iii) 0 L:24 D (constant darkness). Fifty larvae per tray were reared under different light periods and fed ground fish food. Survival and larval development times, emergence and pupation rates, the male-to-female ratio, and adult longevity were recorded. The use of different photoperiods affected several biological parameters of A. darlingi. The 24 L:0 D and 0 L:24 D treatments resulted in higher mortality, whereas constant light increased larval development time. The male-to-female ratio was greatly reduced under constant light conditions, but adult longevity was not affected by the photoperiods used. Thus, unnatural light conditions (complete light or complete darkness) result in suboptimal mosquito rearing.

Nonato Dos Santos, A., Tavares Trindade, F. T., & de Almeida e Silva, A. (2023). Effect of different photoperiods on the biology of immatures and adults of Anopheles darlingi (Diptera: Culicidae). Revista Colombiana De Entomología, 49(2). https://doi.org/10.25100/socolen.v49i2.12709

Araújo, M. S., Gil, L. H. S., & Silva, A. A. E. (2012). Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions. Malaria Journal, 11(261), 1-9. https://doi.org/10.1186/1475-2875-11-261 DOI: https://doi.org/10.1186/1475-2875-11-261

Araujo, M. S., Andrade, A. O., Santos, N. A. C., Pereira, D. B., Costa, G. S., Paulo, P. F. M., Rios Tong, C., Moreno, M., da Silva Pereira, L. H., & Medeiros, J. F. (2019). Brazil’s first free-mating laboratory colony of Nyssorhynchus darlingi. Revista da Sociedade Brasileira de Medicina Tropical, 52. https://doi.org/10.1590/0037-8682-0159-2019 DOI: https://doi.org/10.1590/0037-8682-0159-2019

Arruda, A., Ferreira, G. S., Lima, N. C. S., Santos Júnior, A., Custódio, M. G. F., Benevides-Matos, N., Ozaki, L. S., Stabeli, R. G., & Silva, A. A. E. (2017). Simple methodology to collect culturable bacteria from feces of Anopheles darlingi (Diptera: Culicidae). Journal of Microbiological Methods, 141, 115-117. https://doi.org/10.1016/j.mimet.2017.08.004 DOI: https://doi.org/10.1016/j.mimet.2017.08.004

Bahşi, Ş. Ü., & Tunç, İ. (2008). Development, survival and reproduction of Orius niger (Hemiptera: Anthocoridae) under different photoperiod and temperature regimes. Biocontrol Science and Technology, 18(8), 767-778. https://doi.org/10.1080/09583150802302215 DOI: https://doi.org/10.1080/09583150802302215

Bambozzi, A. C., Filho, J. T. S., Thomaz, L. A., & Oshiro, L. M. Y. (2004). Efeito do fotoperíodo sobre o desenvolvimento de girinos de Rá-touro (Rana catesbeiana Shaw, 1802). Revista Brasileira de Zootecnia, 33(1), 1-7. https://doi.org/10.1590/S1516-35982004000100001 DOI: https://doi.org/10.1590/S1516-35982004000100001

Barrozo, R. B., Schilman, P. E., Minoli, S. A., & Lazzari, C. R. (2004). Daily rhythms in disease-vector insects. Biological Rhythm Research, 35(2), 79-92. https://doi.org/10.1080/09291010412331313250 DOI: https://doi.org/10.1080/09291010412331313250

Beck, S. D. (1980). Insect Photoperiodism. 2nd ed. Academic Press. N.Y. DOI: https://doi.org/10.1016/B978-0-12-084380-0.50015-6

Camus, T., & Zeng, C. (2008). Effects of photoperiod on egg production and hatching success, naupliar and copepodite development, adult sex ratio and life expectancy of the tropical calanoid copepod Acartia sinjiensis. Aquaculture, 280(4), 220-226. https://doi.org/10.1016/j.aquaculture.2008.05.008 DOI: https://doi.org/10.1016/j.aquaculture.2008.05.008

Clements, A. N. (1999). The Biology of Mosquitoes - Sensory Reception and Behavior. vol. 2. CABI Publishing. U.K. https://doi.org/10.1079/9780851993133.0000 DOI: https://doi.org/10.1079/9780851993133.0000

Consoli, R. A. G. B., & Oliveira, R. L. (1994). Principais mosquitos de importância sanitária no Brasil. 1st ed. Fundação Oswaldo Cruz. R.J. https://doi.org/10.7476/9788575412909 DOI: https://doi.org/10.7476/9788575412909

Costa, W. L. S., Tadei, W. P., Santos, J. M. M., & Scarpassa, V. M. (1988). Biologia dos Anofelinos Amazônicos: XII. Ocorrência de espécies de Anopheles, Dinâmica da transmissão e controle da malária na zona urbana de Ariquemes (Rondônia). Instituto de Medicina Tropical de São Paulo, 30(3), 221-251. https://doi.org/10.1590/S0036-46651988000300017 DOI: https://doi.org/10.1590/S0036-46651988000300017

Deane, L. M. (1986). Malaria vectors in Brazil. Memorial Instituto Oswaldo Cruz, 81(2), 5-14. https://doi.org/10.1590/S0074-02761986000600002 DOI: https://doi.org/10.1590/S0074-02761986000600002

Dias, A. C., Rodrigues, M. M. S., Silva, A. A. E. (2019). Effect of acute and chronic exposure to ammonia on different larval instars of Anopheles darlingi (Diptera: Culicidae). Journal of Medical Entomology, 44(1), 112-118. https://doi.org/10.1111/jvec.12335 DOI: https://doi.org/10.1111/jvec.12335

Gardner, C., & Maguire, G. B. (1998). Effect of photoperiod and light intensity on survival, development and cannibalism of larvae of the Australian giant crab Pseudocarcinus gigas (Lamarck). Aquaculture, 165(2), 51-63. https://doi.org/10.1016/S0044-8486(98)00245-2 DOI: https://doi.org/10.1016/S0044-8486(98)00245-2

Gil, L. H. S., Katsuragawa, T. H., Lima, A. A., Tada, M. S., Ozaki, L. S., & Julião, G. R. (2015). Rudimentary cesspits as breeding site for Aedes aegypti in urban areas of Northern Brazil. Revista Pan-Amazônica de Saúde, 6(1), 73-80. http://scielo.iec.gov.br/pdf/rpas/v6n3/2176-6223-rpas-6-03-73.pdf DOI: https://doi.org/10.5123/S2176-62232015000300010

Gutierrez, P., Delgado, M. J., & Alonso-Bedate, M. (1984). Influence of photoperiod and melatonin administration on growth and metamorphosis in Discoglossus pictus larvae. Comparative Biochemistry Physiology, 79(2), 255-260. https://doi.org/10.1016/0300-9629(84)90425-0 DOI: https://doi.org/10.1016/0300-9629(84)90425-0

Hoffman, S., & Subramanian, G. M. (2005). Light deprivation affects larval development and arrestin gene expression in Anopheles stephensi. Journal of Medical Entomology, 42(5), 801-804. https://doi.org/10.1093/jmedent/42.5.801 DOI: https://doi.org/10.1093/jmedent/42.5.801

Huestis, D. L., Artis, M. L., Armbruster, P. A., & Lehmann, T. (2017). Photoperiodic responses of Sahelian malaria mosquitoes Anopheles coluzzii and An. arabiensis. Parasites & Vectors, 10(621), 1-12. https://doi.org/10.1186/s13071-017-2556-z DOI: https://doi.org/10.1186/s13071-017-2556-z

Lanciani, C. A. (1993). Photoperiod and longevity in Anopheles crucians. Journal of American Mosquito Control Association, 9(3), 308-312. https://pubmed.ncbi.nlm.nih.gov/8245940/

Lazzari, C. R. (1992). Circadian organization of locomotion activity in the haematophagous bug Triatoma infestans. Jornal Insect Physiology, 38(11), 895-903. https://doi.org/10.1016/0022-1910(92)90101-I DOI: https://doi.org/10.1016/0022-1910(92)90101-I

Lanzaro, G. C., Narang, S. K., Mitchell, S. E., Kaiser, P. E., & Seawright., J. A. (1988). Hybrid male sterility in crosses between field and laboratory strains of Anopheles quadrimaculatus (Say) (Diptera: Culicidae). Journal of Medical Entomology, 25(4), 248-255. https://doi.org/10.1093/jmedent/25.4.248 DOI: https://doi.org/10.1093/jmedent/25.4.248

Meireles-Filho, A. C. A., & Kyriacou, C. P. (2013). Circadian rhythms in insect disease vectors. MemóriasInstituto Oswaldo Cruz, 108(4), 48-58. https://doi.org/10.1590/0074-0276130438 DOI: https://doi.org/10.1590/0074-0276130438

Nayar, J. K. (1967). Endogenous diurnal rhythm of pupation in a mosquito population. Nature, 214(5090), 828-829. https://doi.org/10.1038/214828a0 DOI: https://doi.org/10.1038/214828a0

Özkaya, Ö., & Rosato, E. (2012). The Circadian Clock of the Fly: A Neurogenetics Journey Through Time, vol. 77. In M.B. Sokolowski & S.F. Goodwin (Eds.), Gene - Environment Interplay: Advances in Genetics (pp. 79-123). AP. USA. https://doi.org/10.1016/b978-0-12-387687-4.00004-0 DOI: https://doi.org/10.1016/B978-0-12-387687-4.00004-0

OPAS BRASIL. “Casos de Malária Aumentam na Região das Américas”. (2018). Available at: https://www.paho.org/pt/noticias/2-2-2018-casos-malaria-aumentam-na-regiao-das-americas

Pilate, V. J., Silva, L. C., & Bessa, E. C. A. (2014). Efeito do fotoperíodo sobre o ciclo de vida e a morfometria da concha de Dysopeas muibum (Mollusca, Subulinidae) em condições de laboratório. Iheringia, Série Zoologia, 104(3), 269-276. https://doi.org/10.1590/1678-476620141043269276 DOI: https://doi.org/10.1590/1678-476620141043269276

Siria, D. J., Batista, E. P. A., Opiyo, M. A., Melo, E. F., Sumaye, R. D., Ngowo, H. S., Eiras, A. E., & Okumu., F. O. (2018). Evaluation of a simple polytetrafluoroethylene (PTFE)-based membrane for blood-feeding of malaria and dengue fever vectors in the laboratory. Parasites and Vectors, 11(236), 2-10. https://doi.org/10.1186/s13071-018-2823-7 DOI: https://doi.org/10.1186/s13071-018-2823-7

Ukubuiwe, A. C., Olayemi, I. K., Omalu, I. C. J., Arimoro, F. O., Baba, B. M., & Ukubuiwe, C. C. (2018). Effects of varying photoperiodic regimens on critical biological fitness traits of Culex quinquefasciatus (Diptera: Culicidae) mosquito vector. International Journal of Insect Science, 10, 1-10. https://doi.org/10.1177/1179543318767915 DOI: https://doi.org/10.1177/1179543318767915

Yee, D. A., Juliano, S. A., & Vamosi, S. M. (2012). Seasonal photoperiods alter time and mass of an invasive mosquito, Aedes albopictus (Diptera: Culicidae), across its north-south range in the Unites States. Journal of Medical Entomology, 49(4), 825-832. https://doi.org/10.1603/ME11132 DOI: https://doi.org/10.1603/ME11132

Zanin, C. R. F., Trindade, F. T. T., & Silva, A. A. E. (2019). Effect of different food and sugar sources on the larval biology and adult longevity of Anopheles darlingi (Diptera: Culicidae). Tropical Biomedicine, 36(2), 569-577. https://msptm.org/files/Vol36No2/569-577-Silva-AAE.pdf

Received 2022-12-28
Accepted 2023-10-05
Published 2023-12-01