Effect of six diets during the larval and adult period of Aedes aegypti (Diptera: Culicidae) under laboratory conditions
Main Article Content
Rearing the laboratory vector Aedes aegypti (Diptera: Culicidae), a disease vector, necessitated diets nutritionally rich in protein and carbohydrates, yet low in fat. The objective of this study was to evaluate and compare the effects of various diets on larval and adult stages, with a specific focus on wing size. Six diets were compared: CIETROP-CC concentrate, fish-based diets (Nutrafin-NF and Aqua One-AO), carnivore-based diets (Ricocan-RC and Supercat-SC), and brewer's yeast (LV). The development of larval stages was assessed using Kaplan-Meier survival analysis, while wing length was compared using Mood's median test. The developmental duration from larva to adult was consistent across all six diets, averaging 13 days. Larvae fed LV exhibited a lower survival rate (88 %) compared to the other diets (99%). Female wing size ranged from 2.81 to 2.93 mm, with a mean of 2.88 mm and a standard deviation of 0.12, while male wing size ranged from 2.18 to 2.28 mm, with a mean of 2.23 mm and a standard deviation of 0.17. All diets supported satisfactory larval development, with no significant differences observed in larval survival or developmental duration (P > 0.05). Notably, the CIETROP-CC and commercial diets yielded similar results. These findings indicate that the laboratory-prepared diet exhibited comparable performance to the other five diets in terms of survival and developmental rates. Further analysis will enable the determination of its specific nutritional composition. The results underscore the efficacy of commercial diets in supporting larval.
Aguilar-Ramírez, Y. C. (2014). Efecto del alimento con dos niveles proteicos en la crianza semiintensiva de Colossoma macropomun “gamitana” en la comunidad nativa Aawajum Jayais, Chiriaco-Amazonas [Tesis profesional, Universidad Nacional de Trujillo]. https://hdl.handle.net/20.500.14414/5395
Araújo, M d S., Gil, L. H. S., & e-Silva, A. (2012). Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions. Malaria Journal, 11(261). https://doi.org/10.1186/1475-2875-11-261 DOI: https://doi.org/10.1186/1475-2875-11-261
Benedict, M. Q., Hunt, C. M., Vella, M. G., Gonzalez, K. M., Dotson, E. M., & Collins, C. M. (2020). Pragmatic selection of larval mosquito diets for insectary rearing of Anopheles gambiae and Aedes aegypti. PLoS ONE, 15(3), e0221838https://doi.org/10.1371/journal.pone.0221838 DOI: https://doi.org/10.1371/journal.pone.0221838
Bond, J. G., Ramírez-Osorio, A., Marina, C. F., Fernández-Salas, I., Liedo, P., Dor, A., & Williams, T. (2017). Efficiency of two larval diets for mass-rearing of the mosquito Aedes aegypti. PLoS ONE, 12(11), e0187420. https://doi.org/10.1371/journal.pone.0187420 DOI: https://doi.org/10.1371/journal.pone.0187420
Carvalho, D. O., Nimmo, D., Naish, N., McKemey, A. R., Gray, P., Wilke, A. B. B., Marrelli, M. T., Virginio, J. F., Alphey, L., & Capurro, M. L. (2014). Mass production of genetically modified Aedes aegypti for field releases in Brazil. Journal of Visualized Experiments, (83), e3579. https://doi.org/10.3791/3579 DOI: https://doi.org/10.3791/3579-v
Consoli, R. A. G. B., & Oliveira, R. L. de. (1994). Principais mosquitos de importância sanitária no Brasil (Primera edición). Editora FIOCRUZ. DOI: https://doi.org/10.7476/9788575412909
Grossman, M. K., Uc-Puc, V., Flores, A. E., Manrique-Saide, P. C., & Vazquez-Prokopec, G. M. (2018). Larval density mediates knockdown resistance to pyrethroid insecticides in adult Aedes aegypti. Parasites & Vectors, 11(282), 1-6. https://doi.org/10.1186/s13071-018-2865-x DOI: https://doi.org/10.1186/s13071-018-2865-x
Guerra Flores, H. (2006). Cultivando peces amazónicos (2°). Instituto de Investigaciones de la Amazonía Peruana. https://www.iiap.org.pe/upload/Publicacion/PUBL900.pdf
Hasan, M. M., Hernández-Yépez, P. J., de los Angeles Rivera-Cabrera, M., Sarkar, A., dos Santos Costa, A. C., & Essar, M. Y. (2022). Concurrent epidemics of dengue and COVID-19 in Peru: Which way forward? The Lancet Regional Health - Americas, 12, 1-3. https://doi.org/10.1016/j.lana.2022.100277 DOI: https://doi.org/10.1016/j.lana.2022.100277
Jensen, K., Ko, A. E., Schal, C., & Silverman, J. (2016). Insecticide resistance and nutrition interactively shape life-history parameters in German cockroaches. Scientific Reports, 6(1), 28731. https://doi.org/10.1038/srep28731 DOI: https://doi.org/10.1038/srep28731
Khan, I., Farid, A., & Zeb, A. (2013). Development of inexpensive and globally available larval diet for rearing Anopheles stephensi (Diptera: Culicidae) mosquitoes. Parasites & Vectors, 6(90), 1-7. https://doi.org/10.1186/1756-3305-6-90 DOI: https://doi.org/10.1186/1756-3305-6-90
Kittayapong, P., Edman, J. D., Harrison, B. A., & Delorme, D. R. (1992). Female body size, parity, and malaria infection of Anopheles maculatus (Diptera: Culicidae) in Peninsular Malaysia. Journal of Medical Entomology, 29(3), 379-383. https://doi.org/10.1093/jmedent/29.3.379 DOI: https://doi.org/10.1093/jmedent/29.3.379
Kivuyo, H. S., Mbazi, P. H., Kisika, D. S., Munga, S., Rumisha, S. F., Urasa, F. M., & Kweka, E. J. (2014). Performance of five food regimes on Anopheles gambiae senso stricto larval rearing to adult emergence in insectary. PLoS ONE, 9(10), e110671. https://doi.org/10.1371/journal.pone.0110671 DOI: https://doi.org/10.1371/journal.pone.0110671
Lainhart, W., Bickersmith, S. A., Moreno, M., Tong Rios, C., Vinetz, J. M., & Conn, J. E. (2015). Changes in genetic diversity from field to laboratory during colonization of Anopheles darlingi Root (Diptera: Culicidae). The American Journal of Tropical Medicine and Hygiene, 93(5), 998-1001. https://doi.org/10.4269/ajtmh.15-0336 DOI: https://doi.org/10.4269/ajtmh.15-0336
Lang, B. J., Idugboe, S., McManus, K., Drury, F., Qureshi, A., & Cator, L. J. (2018). The effect of larval diet on adult survival, swarming activity and copulation success in male Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 55(1), 29-35. https://doi.org/10.1093/jme/tjx187 DOI: https://doi.org/10.1093/jme/tjx187
Lower-Hernán, M. (2017). Métodos de monitoreo de Aedes aegypti para su control en Entre Ríos: un enfoque hacia un ordenamiento ambiental y un ecosistema urbano saludable. [Tésis especialización, Universidad Tecnológica Nacional]. https://ria.utn.edu.ar/server/api/core/bitstreams/fc2a1163-afb2-4f1e-b714-00fe626ea593/content
Manrique-Saide P, Delfin-Gonzáles H, Parra-Tabla V, Ibañez-Bernal S. (1998). Desarrollo, mortalidad y sobrevivencia de las etapas inmaduras de Aedes aegypti (Diptera: Culicidae) en neumáticos. Revista Biomédica, 9(2), 84-91. https://pesquisa.bvsalud.org/portal/resource/pt/lil-248114
Martinson, V. G., & Strand, M. R. (2021). Diet-microbiota interactions alter mosquito development. Frontiers in Microbiology, 12(650743), 1-16. https://doi.org/10.3389/fmicb.2021.650743 DOI: https://doi.org/10.3389/fmicb.2021.650743
Merritt, R. W., Dadd, R. H., & Walker, E. D. (1992). Feeding Behavior, Natural Food, and Nutritional Relationships of Larval Mosquitoes. Annual Review of Entomology, 37(1), 349-374. https://doi.org/10.1146/annurev.en.37.010192.002025 DOI: https://doi.org/10.1146/annurev.en.37.010192.002025
Morante-Silva, P., Ruíz-González, C., Atarama-Montero, N., & Andrade-Herrera, K. N. (2019). Efecto del extracto etanólico de Azadirachta indica “Neem” sobre la viabilidad del huevo y larva de Aedes (Stegomyia) aegypti (Diptera: Culicidae) en laboratorio. Revista Peruana de Entomología, 54(1), 1-11.
Moreno, M., Tong, C., Guzmán, M., Chuquiyauri, R., Llanos-Cuentas, A., Rodriguez, H., Gamboa, D., Meister, S., Winzeler, E. A., Maguina, P., Conn, J. E., & Vinetz, J. M. (2014). Infection of laboratory-colonized Anopheles darlingi mosquitoes by Plasmodium vivax. The American Journal of Tropical Medicine and Hygiene, 90(4), 612-616. https://doi.org/10.4269/ajtmh.13-0708 DOI: https://doi.org/10.4269/ajtmh.13-0708
Nasci, R. S., & Mitchell, C. J. (1994). Larval diet, adult size, and susceptibility of Aedes aegypti (Diptera: Culicidae) to infection with Ross River Virus. Journal of Medical Entomology, 31(1), 123-126. https://doi.org/10.1093/jmedent/31.1.123 DOI: https://doi.org/10.1093/jmedent/31.1.123
Nelson, M. (1986). Biología y ecología del Aedes aegypti- OPS (1.a ed.). Organización Panamericana de la Salud. Washington D.C. https://iris.paho.org/handle/10665.2/28513
Pérez Alarcón, M. E. (2019). Eficacia del piryproxifen frente al temephos para el control de Aedes aegypti en condiciones de laboratorio en Lima Perú. [Tesis Doctoral, Universidad Nacional Mayor de San Marcos]. https://hdl.handle.net/20.500.12672/10579
Rivera-Pérez, C., Clifton, M. E., & Noriega, F. G. (2017). How micronutrients influence the physiology of mosquitoes. Current Opinion in Insect Science, 23, 112-117. https://doi.org/10.1016/j.cois.2017.07.002 DOI: https://doi.org/10.1016/j.cois.2017.07.002
Sasmita, H. I., Tu, W.-C., Bong, L. J., & Neoh, K. B. (2019). Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Parasites & Vectors, 12(578). https://doi.org/10.1186/s13071-019-3830-z DOI: https://doi.org/10.1186/s13071-019-3830-z
Schneider, J. R., Morrison, A. C., Astete, H., Scott, T. W., & Mark L. Wilson. (2004). Adult size and distribution of Aedes aegypti (Diptera: Culicidae) associated with larval habitats in Iquitos, Peru. Journal of Medical Entomology, 41(4), 634-642. https://doi.org/10.1603/0022-2585-41.4.634 DOI: https://doi.org/10.1603/0022-2585-41.4.634
Senevirathna, U., Udayanga, L., Ganehiarachchi, M., Hapugoda, M., Ranathunge, T., & Gunawardene, N. S. (2020). Development of an alternative low-cost larval diet for mass rearing of Aedes aegypti mosquitoes In Sri Lanka. BioMed Research International, 2020(1), 1053818. https://doi.org/10.1155/2020/1053818 DOI: https://doi.org/10.1155/2020/1053818
Shapiro, L. L. M., Murdock, C. C., Jacobs, G. R., Thomas, R. J., & Thomas, M. B. (2016). Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proceedings of the Royal Society B: Biological Sciences, 283(1834), 20160298. https://doi.org/10.1098/rspb.2016.0298 DOI: https://doi.org/10.1098/rspb.2016.0298
Singh, K. R. P. & Brown, A. W. A. (1957). Nutritional requirements of Aedes aegypti L. Journal of Insect Physiology, 1(3), 199-220. https://doi.org/10.1016/0022-1910(57)90036-7 DOI: https://doi.org/10.1016/0022-1910(57)90036-7
Souza, R. S., Virginio, F., Riback, T. I. S., Suesdek, L., Barufi, J. B., & Genta, F. A. (2019). Microorganism-based larval diets affect mosquito development, size and nutritional reserves in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Frontiers in Physiology, 10(152), 1-24. https://doi.org/10.3389/fphys.2019.00152 DOI: https://doi.org/10.3389/fphys.2019.00152
Takken, W., Smallegange, R. C., Vigneau, A. J., Johnston, V., Brown, M., Mordue-Luntz, A. J., & Billingsley, P. F. (2013). Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasites & Vectors, 6(345), 10. https://doi.org/10.1186/1756-3305-6-345 DOI: https://doi.org/10.1186/1756-3305-6-345
van Schoor, T., Kelly, E. T., Tam, N., & Attardo, G. M. (2020). Impacts of dietary nutritional composition on larval development and adult body composition in the yellow fever mosquito (Aedes aegypti). Insects, 11(8), 535. https://doi.org/10.3390/insects11080535 DOI: https://doi.org/10.3390/insects11080535
Williams, M., Mayer, S. V., Johnson, W. L., Chen, R., Volkova, E., Vilcarromero, S., Widen, S. G., Wood, T. G., Suarez-Ognio, L., Long, K. C., Hanley, K. A., Morrison, A. C., Vasilakis, N., & Halsey, E. S. (2014). Lineage II of Southeast Asian/American DENV-2 is associated with a severe dengue outbreak in the Peruvian Amazon. The American Journal of Tropical Medicine and Hygiene, 91(3), 611-620. https://doi.org/10.4269/ajtmh.13-0600 DOI: https://doi.org/10.4269/ajtmh.13-0600
Wohl, M. P., & McMeniman, C. J. (2023). Batch rearing Aedes aegypti. Cold Spring Harbor Protocols, 2023(3), 172-181. https://doi.org/10.1101/pdb.prot108017 DOI: https://doi.org/10.1101/pdb.prot108017
Accepted 2024-11-05
Published 2025-03-19

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain the copyright on their work and are responsible for the ideas expressed in them. Once a manuscript is approved for publication, authors are asked for a publication license for the term of legal protection, for all territories that allows the use, dissemination and disclosure of the same.