Main Article Content


This study evaluated the bioactive effects of Melaleuca alternifolia essential oil on the behavior and mortality of Ascia monuste orseis caterpillars. The experiment was conducted at the laboratory under controlled conditions using a completely randomized design with six treatments, represented by A. monuste orseis caterpillars fed collard leaves treated with 0 (control), 5, 10, 20, 30, or 40 mg mL−1 essential oil. Each treatment consisted of five replicates of four third-instar caterpillars. Mean daily intake of collard leaves, feces production, mortality, and behavioral changes were assessed for 15 days after the beginning of the experiment. Data on leaf intake and feces production were subjected to analysis of variance by the F-test; when significant differences were found, data were subjected to regression analysis. Corrected mortality rate was calculated and subjected to analysis of variance by the F-test followed by Tukey’s test at the 5% significance level for comparison of means. The median lethal dose (LD50) was also evaluated. Two very clear feeding behaviors were observed, one in caterpillars exposed to essential oil concentrations of 5, 10, and 20 mg mL−1, which showed little difference in feed intake from the control, and the other in caterpillars exposed to the highest concentrations (30 and 40 mg mL−1), which showed a decrease of 76 to 93% in feed intake compared with the control. Lower leaf intake resulted in a decrease in feces production, and the negative effects increased linearly with essential oil concentration. The mortality curve showed a linear and positive response to essential oil concentration, reaching 100% in insects exposed to the highest concentrations. The LD50 was 13.93 mg mL−1.

Martins Da Silva, P. H., Prado, E. P., Ferreira-Filho , P. J., Francisco, J. P., Del Quiqui, E. M., Silva, C., & Guerreiro, J. C. (2023). Insecticidal and antifeedant bioactivities of Melaleuca alternifolia essential oil on Ascia monuste orseis. Revista Colombiana De Entomología, 49(2).

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267. DOI:

Abdullah, F., Sabramanian, P., Ibrahim, H., Nurestri, S., Malek, A., Guan-Serm, L., & Hong, S. L. (2015). Chemical composition, antifeedant, repellent, and toxicity activities of the rhizomes of galangal, Alpinia galanga against Asian subterranean termites, Coptotermes gestroi and Coptotermes curvignathus (Isoptera: Rhinotermitidae). Journal of Insect Science, 15(1), 1-7. DOI:

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. 4ºed. Illinois USA: Allured Publishing Corporation, Carol Stream.

Arasu, M. V., AL-Dhabi, N. A., Saritha, V., Duraipandiyan, V., Muthukumar, C., & Kin, S. (2013). Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp. AP-123 against Helicoverpa armigera and Spodoptera litura. BMC Microbiol, 13(1), 105. https://doi:10.1186/1471-2180-13-105 DOI:

Arun, K. T., Shikha, U., Mantu, B., & Bhattacharya, P. R. (2009). A review on prospects of essential oils as biopesticide in insect-pest management. Journal of Pharmacognosy and Phytotherapy, 1(5), 1-13.

Baldin, E. L. L., Schlick-Souza, E. C., Lourenção, A. L., & Camargo, R. S. (2015). Resistance of collard greens to Ascia monuste orseis (Lepidoptera: Pieridae). Arthropod-Plant Interactions, 9(1), 67-74. https://doi:10.1007/s11829-014-9344-x DOI:

Baldissera, M. D., Silva, A. S., Oliveira, C. B., Santos, R. C., Vaucher, R. A., Raffin, R. P., & Monteiro, S. G. (2014). Trypanocidal action of tea tree oil (Melaleuca alternifolia) against Trypanosoma evansi in vitro and in vivo used mice as experimental model. Experimental Parasitology, 141, 21-27. https://doi:10.1016/j.exppara.2014.03.007 DOI:

Benelli, G., Canale, A., Flamini, G., Cioni, P. L., Demi, F., Ceccarini, L., & Conti, B. (2013). Biotoxicity of Melaleuca alternifolia (Myrtaceae) essential oil against the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), and its parasitoid Psyttalia concolor (Hymenoptera: Braconidae). Industrial Crops and Products, 50, 596-603. https://doi:10.1016/j.indcrop.2013.08.006 DOI:

Callander, J. T., & James, P. J. (2012). Insecticidal and repellent effects of tea tree (Melaleuca alternifolia) oil against Lucilia cuprina. Veterinary Parasitology, 184(2-4), 271-278.

https://doi:10.1016/j.vetpar.2011.08.017 DOI:

Chawner, L. R., & Hetherington, M. M. (2021). Utilising an integrated approach to developing liking for and consumption of vegetables in children. Physiology & Behavior, 238(May), 113493.

https://doi:10.1016/j.physbeh.2021.113493 DOI:

Coudron, T. A., Yocum, G. D., & Brandt, S. L. (2006). Nutrigenomics: a case study in the measurement of insect response to nutricional quality. Entomologia Experimentalis et Applicata, 121(1), 1-14. DOI:

Daniel, P. S., Lourenco, E. L. B., Cruz, R. M. S., Goncalves, C. H. S., Almas, L. R. M., Silva, C., Jacomassi, E., Brum Junior, L., Alberton, O. (2020). Composition and antimicrobial activity of essential oil of yarrow (Achillea millefolium L.). Australian Journal of Crop Science, 14, 545-550. DOI:

El-Wakeil, N. E. (2013). Botanical Pesticides and their Mode of Action. Gesunde Pflanzen, 65, 125-149. DOI:

Fayet-Moore, F., Mcconnell, A., Cassettari, T., Tuck, K., Petocz, P., & Kim, J. (2020). Vegetable intake in Australian children and adolescents: the importance of consumption frequency, eating occasion and its association with dietary and sociodemographic factors. Public Health Nutrition, 23(3), 474-487. https://doi:10.1017/S136898001900209X DOI:

Halbert, S. E., Corsini, D., Wiebe, M., & Vaughn, S. F. (2009). Plant‐derived compounds and extracts with potential as aphid repellents. Annals of Applied Biology, 154(2), 303-307.

https://doi:10.1111/j.1744-7348.2008.00300.x DOI:

Hammer, K. A., Carson, C. F., Riley, T. V., & Nielsen, J. B. (2006). A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food and Chemical Toxicology, 44(5), 616-625.

https://doi:10.1016/j.fct.2005.09.001 DOI:

Kedia, A., Prakash, B., Mishra, P. K., Singh, P., & Dubey, N. K. (2015). Botanicals as eco friendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: Bruchidae) – a review. Journal of Food Science and Technology, 52(3), 1239-1257.

https://doi:10.1007/s13197-013-1167-8 DOI:

Klauck, V., Pazinato, R., Stefani, L. M., Santos, R. C., Vaucher, R. A., Baldissera, M. D., & Silva, A. S. (2014). Insecticidal and repellent effects of tea tree and andiroba oils on flies associated with livestock. Medical and Veterinary Entomology, 28(S1), 33-39. DOI:

Kostyukovsky, M., Rafaeli, A., Gileadi, C., Demchenko, N., & Shaaya, E. (2002). Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Management Science: formerly Pesticide Science, 58(11), 1101-1106. https://doi:10.1002/ps.548 DOI:

Liao, M., Xiao, J. J., Zhou, L. J., Liu, Y., Wu, X. W., Hua, R. M., & Cao, H. Q. (2016). Insecticidal activity of Melaleuca alternifolia essential oil and RNA-Seq analysis of Sitophilus zeamais transcriptome in response to oil fumigation. PloS one, 11(12), e0167748.

https://doi:10.1371/journal.pone.0167748 DOI:

Liao, M., Xiao, J. J., Zhou, L. J., Yao, X., Tang, F., Hua, R. M., & Cao, H. Q. (2017). Chemical composition, insecticidal and biochemical effects of Melaleuca alternifolia essential oil on the Helicoverpa armigera. Journal of Applied Entomology, 141(9), 721-728. https://doi: 10.1111/jen.12397 DOI:

Liao, M., Yang, Q. Q., Xiao, J. J., Huang, Y., Zhou, L. J., Hua, R. M., & Cao, H. Q. (2018). Toxicity of Melaleuca alternifolia essential oil to the mitochondrion and NAD+/NADH dehydrogenase in Tribolium confusum. Peer J, 6, e5693. https://doi:10.7717/peerj.5693 DOI:

Liu, T. X. (2005). Biology and life history of Ascia monuste monuste (Lepidoptera: Pieridae), a potential pest of cruciferous vegetables. Annals of the Entomological Society of America, 98(5), 726-731. https://doi:10.1603/0013-8746(2005)098[0726:BALHOA]2.0.CO;2 DOI:[0726:BALHOA]2.0.CO;2

Makhal, A., Robertson, K., Thyne, M., & Mirosa, M. (2021). Normalising the “ugly” to reduce food waste: Exploring the socialisations that form appearance preferences for fresh fruits and vegetables. Journal of Consumer Behaviour, 20(5), 1025-1039. https://doi:10.1002/cb.1908 DOI:

Mapeli, N. C., Santos, R. H. S., Casali, V. W. D., Cremon, C., & Longo, L. (2010). Repelência de Ascia monuste orseis (Latreille) (Lepidoptera: Pieridae) exposta às soluções homeopáticas. Agrarian, 3(8), 119-125.

Melo, R. A., Vendrame, L. P., Madeira, N. R., Blind, A. D., & Vilela, N. J. (2019). Characterization of the Brazilian vegetable brassicas production chain. Horticultura Brasileira, 37(4), 366-372.

https://doi:10.1590/s0102-053620190401 DOI:

Noosidum, A., Chareonviriyaphap, T., & Chandrapatya, A. (2014). Synergistic repellent and irritant effect of combined essential oils on Aedes aegypti (L.) mosquitoes. Journal of Vector Ecology, 39(2), 298-305. DOI:

Parra, J. R. P., Panizzi, A. R., & Haddad, M. L. (2009). Índices nutricionais para medir consumo e utilização de alimentos por insetos. In: A. R. Panizzi & J. R. P. Parra, (Eds.), Bioecologia e nutrição de insetos: base para o manejo integrado de pragas (pp. 37-90). Brasília, DF: Embrapa Informação Tecnológica; Londrina: Embrapa Soja.

R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL

Ribeiro, R. C., Zanuncio, T. V., Ramalho, F. S., Silva, C. A. D., Serrão, J. E., & Zanuncio, J. C. (2015). Feeding and oviposition of Anticarsia gemmatalis (Lepidoptera: Noctuidae) with sublethal concentrations of ten condiments essential oils. Industrial Crops and Products, 74, 139-143. https://doi:10.1016/j.indcrop.2015.03.057 DOI:

Rstudio Team, 2015. RStudio: Integrated Development Environment for R, Boston, MA. Available at:

Tripathi, A. K., Upadhyay, S., Bhuiyan, M., & Bhattacharya, P. R. (2009). A review on prospects of essential oils as biopesticide in insect-pest management. Journal of Pharmacognosy and Phytotherapy, 1(5), 1-13.

Veeran, S., Shu, B., Cui, G., Fu, S., Zhong, G. (2017). Curcumin induces autophagic cell death in Spodoptera frugiperda cells. Pesticide Biochemistry and Physiology, 139, 79-86. DOI:

Viana, J. S., Palaretti, L. F., Sousa, V. M., Barbosa, J. A., Bertino, A. M. P., Faria, R. T., & Dalri, A. B. (2021). Saline irrigation water indices affect morphophysiological characteristics of collard. Horticultura Brasileira, 39(1), 079-085. DOI:

Wahba, T. F. (2020). Antifeedant activity of three essential oils and their nanoemulsions against the rice weevil Sitophilus oryzae (L.). Egyptian Scientific Journal of Pesticides, 6(2), 19-31.


Download data is not yet available.