Insecticidal and antifeedant bioactivities of Melaleuca alternifolia essential oil on Ascia monuste orseis
Main Article Content
This study evaluated the bioactive effects of Melaleuca alternifolia essential oil on the behavior and mortality of Ascia monuste orseis caterpillars. The experiment was conducted at the laboratory under controlled conditions using a completely randomized design with six treatments, represented by A. monuste orseis caterpillars fed collard leaves treated with 0 (control), 5, 10, 20, 30, or 40 mg mL−1 essential oil. Each treatment consisted of five replicates of four third-instar caterpillars. Mean daily intake of collard leaves, feces production, mortality, and behavioral changes were assessed for 15 days after the beginning of the experiment. Data on leaf intake and feces production were subjected to analysis of variance by the F-test; when significant differences were found, data were subjected to regression analysis. Corrected mortality rate was calculated and subjected to analysis of variance by the F-test followed by Tukey’s test at the 5% significance level for comparison of means. The median lethal dose (LD50) was also evaluated. Two very clear feeding behaviors were observed, one in caterpillars exposed to essential oil concentrations of 5, 10, and 20 mg mL−1, which showed little difference in feed intake from the control, and the other in caterpillars exposed to the highest concentrations (30 and 40 mg mL−1), which showed a decrease of 76 to 93% in feed intake compared with the control. Lower leaf intake resulted in a decrease in feces production, and the negative effects increased linearly with essential oil concentration. The mortality curve showed a linear and positive response to essential oil concentration, reaching 100% in insects exposed to the highest concentrations. The LD50 was 13.93 mg mL−1.
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267. https://doi.org/10.1093/jee/18.2.265a DOI: https://doi.org/10.1093/jee/18.2.265a
Abdullah, F., Sabramanian, P., Ibrahim, H., Nurestri, S., Malek, A., Guan-Serm, L., & Hong, S. L. (2015). Chemical composition, antifeedant, repellent, and toxicity activities of the rhizomes of galangal, Alpinia galanga against Asian subterranean termites, Coptotermes gestroi and Coptotermes curvignathus (Isoptera: Rhinotermitidae). Journal of Insect Science, 15(1), 1-7. https://doi.org/10.1093/jisesa/ieu175 DOI: https://doi.org/10.1093/jisesa/ieu175
Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. 4ºed. Illinois USA: Allured Publishing Corporation, Carol Stream.
Arasu, M. V., AL-Dhabi, N. A., Saritha, V., Duraipandiyan, V., Muthukumar, C., & Kin, S. (2013). Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp. AP-123 against Helicoverpa armigera and Spodoptera litura. BMC Microbiol, 13(1), 105. https://doi:10.1186/1471-2180-13-105 DOI: https://doi.org/10.1186/1471-2180-13-105
Arun, K. T., Shikha, U., Mantu, B., & Bhattacharya, P. R. (2009). A review on prospects of essential oils as biopesticide in insect-pest management. Journal of Pharmacognosy and Phytotherapy, 1(5), 1-13. http://www.academicjournals.org/app/webroot/article/article1379417589_Tripathi%20et%20al.pdf
Baldin, E. L. L., Schlick-Souza, E. C., Lourenção, A. L., & Camargo, R. S. (2015). Resistance of collard greens to Ascia monuste orseis (Lepidoptera: Pieridae). Arthropod-Plant Interactions, 9(1), 67-74. https://doi:10.1007/s11829-014-9344-x DOI: https://doi.org/10.1007/s11829-014-9344-x
Baldissera, M. D., Silva, A. S., Oliveira, C. B., Santos, R. C., Vaucher, R. A., Raffin, R. P., & Monteiro, S. G. (2014). Trypanocidal action of tea tree oil (Melaleuca alternifolia) against Trypanosoma evansi in vitro and in vivo used mice as experimental model. Experimental Parasitology, 141, 21-27. https://doi:10.1016/j.exppara.2014.03.007 DOI: https://doi.org/10.1016/j.exppara.2014.03.007
Benelli, G., Canale, A., Flamini, G., Cioni, P. L., Demi, F., Ceccarini, L., & Conti, B. (2013). Biotoxicity of Melaleuca alternifolia (Myrtaceae) essential oil against the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), and its parasitoid Psyttalia concolor (Hymenoptera: Braconidae). Industrial Crops and Products, 50, 596-603. https://doi:10.1016/j.indcrop.2013.08.006 DOI: https://doi.org/10.1016/j.indcrop.2013.08.006
Callander, J. T., & James, P. J. (2012). Insecticidal and repellent effects of tea tree (Melaleuca alternifolia) oil against Lucilia cuprina. Veterinary Parasitology, 184(2-4), 271-278.
https://doi:10.1016/j.vetpar.2011.08.017 DOI: https://doi.org/10.1016/j.vetpar.2011.08.017
Chawner, L. R., & Hetherington, M. M. (2021). Utilising an integrated approach to developing liking for and consumption of vegetables in children. Physiology & Behavior, 238(May), 113493.
https://doi:10.1016/j.physbeh.2021.113493 DOI: https://doi.org/10.1016/j.physbeh.2021.113493
Coudron, T. A., Yocum, G. D., & Brandt, S. L. (2006). Nutrigenomics: a case study in the measurement of insect response to nutricional quality. Entomologia Experimentalis et Applicata, 121(1), 1-14. https://doi.org/10.1111/j.1570-8703.2006.00461.x DOI: https://doi.org/10.1111/j.1570-8703.2006.00461.x
Daniel, P. S., Lourenco, E. L. B., Cruz, R. M. S., Goncalves, C. H. S., Almas, L. R. M., Silva, C., Jacomassi, E., Brum Junior, L., Alberton, O. (2020). Composition and antimicrobial activity of essential oil of yarrow (Achillea millefolium L.). Australian Journal of Crop Science, 14, 545-550. https://www.cropj.com/daniel_14_3_2020_545_550.pdf DOI: https://doi.org/10.21475/ajcs.20.14.03.p2325
El-Wakeil, N. E. (2013). Botanical Pesticides and their Mode of Action. Gesunde Pflanzen, 65, 125-149. https://doi.org/10.1007/s10343-013-0308-3 DOI: https://doi.org/10.1007/s10343-013-0308-3
Fayet-Moore, F., Mcconnell, A., Cassettari, T., Tuck, K., Petocz, P., & Kim, J. (2020). Vegetable intake in Australian children and adolescents: the importance of consumption frequency, eating occasion and its association with dietary and sociodemographic factors. Public Health Nutrition, 23(3), 474-487. https://doi:10.1017/S136898001900209X DOI: https://doi.org/10.1017/S136898001900209X
Halbert, S. E., Corsini, D., Wiebe, M., & Vaughn, S. F. (2009). Plant‐derived compounds and extracts with potential as aphid repellents. Annals of Applied Biology, 154(2), 303-307.
https://doi:10.1111/j.1744-7348.2008.00300.x DOI: https://doi.org/10.1111/j.1744-7348.2008.00300.x
Hammer, K. A., Carson, C. F., Riley, T. V., & Nielsen, J. B. (2006). A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food and Chemical Toxicology, 44(5), 616-625.
https://doi:10.1016/j.fct.2005.09.001 DOI: https://doi.org/10.1016/j.fct.2005.09.001
Kedia, A., Prakash, B., Mishra, P. K., Singh, P., & Dubey, N. K. (2015). Botanicals as eco friendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: Bruchidae) – a review. Journal of Food Science and Technology, 52(3), 1239-1257.
https://doi:10.1007/s13197-013-1167-8 DOI: https://doi.org/10.1007/s13197-013-1167-8
Klauck, V., Pazinato, R., Stefani, L. M., Santos, R. C., Vaucher, R. A., Baldissera, M. D., & Silva, A. S. (2014). Insecticidal and repellent effects of tea tree and andiroba oils on flies associated with livestock. Medical and Veterinary Entomology, 28(S1), 33-39. https://doi.org/10.1111/mve.12078 DOI: https://doi.org/10.1111/mve.12078
Kostyukovsky, M., Rafaeli, A., Gileadi, C., Demchenko, N., & Shaaya, E. (2002). Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Management Science: formerly Pesticide Science, 58(11), 1101-1106. https://doi:10.1002/ps.548 DOI: https://doi.org/10.1002/ps.548
Liao, M., Xiao, J. J., Zhou, L. J., Liu, Y., Wu, X. W., Hua, R. M., & Cao, H. Q. (2016). Insecticidal activity of Melaleuca alternifolia essential oil and RNA-Seq analysis of Sitophilus zeamais transcriptome in response to oil fumigation. PloS one, 11(12), e0167748.
https://doi:10.1371/journal.pone.0167748 DOI: https://doi.org/10.1371/journal.pone.0167748
Liao, M., Xiao, J. J., Zhou, L. J., Yao, X., Tang, F., Hua, R. M., & Cao, H. Q. (2017). Chemical composition, insecticidal and biochemical effects of Melaleuca alternifolia essential oil on the Helicoverpa armigera. Journal of Applied Entomology, 141(9), 721-728. https://doi: 10.1111/jen.12397 DOI: https://doi.org/10.1111/jen.12397
Liao, M., Yang, Q. Q., Xiao, J. J., Huang, Y., Zhou, L. J., Hua, R. M., & Cao, H. Q. (2018). Toxicity of Melaleuca alternifolia essential oil to the mitochondrion and NAD+/NADH dehydrogenase in Tribolium confusum. Peer J, 6, e5693. https://doi:10.7717/peerj.5693 DOI: https://doi.org/10.7717/peerj.5693
Liu, T. X. (2005). Biology and life history of Ascia monuste monuste (Lepidoptera: Pieridae), a potential pest of cruciferous vegetables. Annals of the Entomological Society of America, 98(5), 726-731. https://doi:10.1603/0013-8746(2005)098[0726:BALHOA]2.0.CO;2 DOI: https://doi.org/10.1603/0013-8746(2005)098[0726:BALHOA]2.0.CO;2
Makhal, A., Robertson, K., Thyne, M., & Mirosa, M. (2021). Normalising the “ugly” to reduce food waste: Exploring the socialisations that form appearance preferences for fresh fruits and vegetables. Journal of Consumer Behaviour, 20(5), 1025-1039. https://doi:10.1002/cb.1908 DOI: https://doi.org/10.1002/cb.1908
Mapeli, N. C., Santos, R. H. S., Casali, V. W. D., Cremon, C., & Longo, L. (2010). Repelência de Ascia monuste orseis (Latreille) (Lepidoptera: Pieridae) exposta às soluções homeopáticas. Agrarian, 3(8), 119-125. https://ojs.ufgd.edu.br/index.php/agrarian/article/view/1098
Melo, R. A., Vendrame, L. P., Madeira, N. R., Blind, A. D., & Vilela, N. J. (2019). Characterization of the Brazilian vegetable brassicas production chain. Horticultura Brasileira, 37(4), 366-372.
https://doi:10.1590/s0102-053620190401 DOI: https://doi.org/10.1590/s0102-053620190401
Noosidum, A., Chareonviriyaphap, T., & Chandrapatya, A. (2014). Synergistic repellent and irritant effect of combined essential oils on Aedes aegypti (L.) mosquitoes. Journal of Vector Ecology, 39(2), 298-305. https://doi.org/10.1111/jvec.12104 DOI: https://doi.org/10.1111/jvec.12104
Parra, J. R. P., Panizzi, A. R., & Haddad, M. L. (2009). Índices nutricionais para medir consumo e utilização de alimentos por insetos. In: A. R. Panizzi & J. R. P. Parra, (Eds.), Bioecologia e nutrição de insetos: base para o manejo integrado de pragas (pp. 37-90). Brasília, DF: Embrapa Informação Tecnológica; Londrina: Embrapa Soja.
R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Ribeiro, R. C., Zanuncio, T. V., Ramalho, F. S., Silva, C. A. D., Serrão, J. E., & Zanuncio, J. C. (2015). Feeding and oviposition of Anticarsia gemmatalis (Lepidoptera: Noctuidae) with sublethal concentrations of ten condiments essential oils. Industrial Crops and Products, 74, 139-143. https://doi:10.1016/j.indcrop.2015.03.057 DOI: https://doi.org/10.1016/j.indcrop.2015.03.057
Rstudio Team, 2015. RStudio: Integrated Development Environment for R, Boston, MA. Available at: http://www.rstudio.com/
Tripathi, A. K., Upadhyay, S., Bhuiyan, M., & Bhattacharya, P. R. (2009). A review on prospects of essential oils as biopesticide in insect-pest management. Journal of Pharmacognosy and Phytotherapy, 1(5), 1-13. http://www.academicjournals.org/app/webroot/article/article1379417589_Tripathi%20et%20al.pdf
Veeran, S., Shu, B., Cui, G., Fu, S., Zhong, G. (2017). Curcumin induces autophagic cell death in Spodoptera frugiperda cells. Pesticide Biochemistry and Physiology, 139, 79-86. https://doi.org/10.1016/j.pestbp.2017.05.004 DOI: https://doi.org/10.1016/j.pestbp.2017.05.004
Viana, J. S., Palaretti, L. F., Sousa, V. M., Barbosa, J. A., Bertino, A. M. P., Faria, R. T., & Dalri, A. B. (2021). Saline irrigation water indices affect morphophysiological characteristics of collard. Horticultura Brasileira, 39(1), 079-085. http://dx.doi.org/10.1590/s0102-0536-20210112 DOI: https://doi.org/10.1590/s0102-0536-20210112
Wahba, T. F. (2020). Antifeedant activity of three essential oils and their nanoemulsions against the rice weevil Sitophilus oryzae (L.). Egyptian Scientific Journal of Pesticides, 6(2), 19-31. http://www.esjpesticides.org.eg/JornalWebsite/Publications/2020/6/2/3.pdf
- Pedro José Ferreira-Filho, Carlos Frederico Wilcken, Marcus Vinicius Masson, Wagner de Souza Tavares, Julio César Guerreiro, Janaina Braga do Carmo, Evandro Pereira Prado, José Cola Zanuncio, Influencia de la temperatura y la precipitación sobre la dinámica poblacional de Glycaspis brimblecombei y Psyllaephagus bliteus en plantaciones de Eucalyptus camaldulensis , Revista Colombiana de Entomología: Vol. 43 No. 1 (2017)
Accepted 2023-04-19
Published 2023-07-11

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain the copyright on their work and are responsible for the ideas expressed in them. Once a manuscript is approved for publication, authors are asked for a publication license for the term of legal protection, for all territories that allows the use, dissemination and disclosure of the same.