Main Article Content

Authors

etically modified organisms (GMOs) are widespread in Brazil, especially those related to resistance to herbicides and insects. This work aimed to evaluate herbicides' effect on the emergence of maize weevil Sitophilus zeamais (Coleoptera: Curculionidae) in different maize genotypes. The experimental design was a 3 × 5 factorial experiment in a randomized complete block design with four replications. Genotypes of transgenic maize, Herculex® (TC1507) and PowerCore® (MON89034 × TC1507 × NK603) and an Isohybrid (non-transgenic) were used. The herbicides were Atrazine, Atrazine + Nicosulfuron, Ammonium Glufosinate, Nicosulfuron and a control treatment without herbicide application. The emergence of S. zeamais was observed in grains from each plot for 100 days, with 300 grams of maize grains. The Isohybrid was the most attractive to S. zeamais when no herbicide was applied. The application of Ammonium Glufosinate increased S. zeamais preference for Herculex® and Nicosulfuron for PowerCore®. The insertion of an exogenous gene and the application of herbicides in maize plants can alter components of the insect-plant interaction, changing the attractiveness to S. zeamais.

Pereira Sánchez, L., Willian Rocha de Souza, M., Maria Teixeira Fialho, C., Alves Ferreira, E., Aparecido dos Santos, E., Von dos Santos Veloso, R., & Alvarenga Soares, M. (2023). Effect of herbicides on the emergence of Sitophilus zeamais (Coleoptera: Curculionidae) in transgenic Bt maize. Revista Colombiana De Entomología, 49(1). https://doi.org/10.25100/socolen.v49i1.11677

Abass, A. B., Ndunguru, G., Mamiro, P., Alenkhe, B., Mlingi, N., & Bekunda, M. (2014). Post-harvest food losses in a maize-based farming system of semi-arid savannah area of Tanzania. Journal of Stored Products Research, 57, 49-57. https://doi.org/10.1016/j.jspr.2013.12.004

Brown, S., & Lee, R. (2002). Effect of planting date, variety and degree of ear maturation on the colonization of field corn by maize weevils (Coleoptera: Curculionidae). Entomological Science, 37(2), 137-142. https://doi.org/10.18474/0749-8004-37.2.137

Bruce, T. J., Wadhams, L. J., & Woodcock, C. M. (2005). Insect host location: a volatile situation. Trends in Plant Science, 10(6), 269-274. https://doi.org/10.1016/j.tplants.2005.04.003

Caneppele, M. A. B., Caneppele, C., Lázzari, F. A., & Lázzari, S. M. N. (2003). Correlation between the infestation level of Sitophilus zeamais Motschulsky, 1855 (Coleoptera, Curculionidae) and the quality factors of stored corn, Zea mays L. (Poaceae). Revista Brasileira de Entomologia, 47(4), 625-630. https://doi.org/10.1590/S0085-56262003000400015

Carvalho, G. A., Vieira, J. L., Haro, M. M., Corrêa, A. S., Ribon, A. O. B., Oliveira, L. O., & Guedes, R. N. C. (2014). Pleiotropic impact of endosymbiont load and co-occurrence in the maize weevil Sitophilus zeamais. PLoS One, 9(10), e111396. https://doi.org/10.1371/journal.pone.0111396

Cavalieri, S. D., Oliveira Junior, R. S., Constantin, J., Biffe, D. F., Rios, F. A., & Franchini, L. H. M. (2008). Tolerance of corn hybrids to nicosulfuron. Planta Daninha, 26(1), 203-214. https://doi.org/10.1590/S0100-83582008000100021

Cutulle, M. A., Armel, G. R., Kopsell, D. A., Wilson, H. P., Brosnan, J. T., Vargas, J. J., Hines, T. E., & Koepke-Hill, R. M. (2018). Several pesticides influence the nutritional content of sweet corn. Journal of Agricultural and Food Chemistry, 66(12), 3086-3092. https://doi.org/10.1021/acs.jafc.7b05885

De Groote, H., De Groote, B., Bruce, A. Y., Marangu, C., & Tefera, T. (2017). Maize storage insects (Sitophilus zeamais and Prostephanus truncatus) prefer to feed on smaller maize grains and grains with color, especially green. Journal of Stored Products Research, 71, 72-80. https://doi.org/10.1016/j.jspr.2017.01.005

De Menezes, C. W. G., & Soares, M. A. (2016). Impacts of the control of weeds and herbicides applied to natural enemies. Revista Brasileira de Herbicidas, 15(1), 2-13. https://doi.org/10.7824/rbh.v1i1.407

De Souza, M. W. R., Ferreira, E. A., Dos Santos, J. B., Soares, M. A., Castro, B. M. C., & Zanuncio, J. C. (2020). Fluorescence of chlorophyll a in transgenic maize with herbicide application and attacked by Spodoptera frugiperda (Lepidoptera: Noctuidae). Phytoparasitica, 48(1), 567-573. https://doi.org/10.1007/s12600-020-00816-5

Demissie, G., Tilahun, B., Dida, M., Teklewold, A., & Wegary, D. (2015). Evaluation of quality protein maize inbred lines for resistance to maize weevil Sitophilus zeamais (Coleoptera: Curculionidae) and other important agronomic traits. Euphytica, 205(1), 137-150. https://doi.org/10.1007/s10681-015-1412-5

Dobie, P. (1974). The laboratory assessment of the inherent susceptibility of maize varieties to post-harvest infestation by Sitophilus zeamais Motsch. (Coleoptera, Curculionidae). Journal of Stored Products Research, 10(3-4), 183-197. https://doi.org/10.1016/0022-474X(74)90006-X

Dyer, W. E. (2018). Stress‐induced evolution of herbicide resistance and related pleiotropic effects. Pest Management Science, 74(8), 1759-1768. https://doi.org/10.1002/ps.5043

Ferreira, D. F. (2014). SISVAR (Versão 5.6) [Software]. Lavras: UFLA/DEX. Intel. https://des.ufla.br/~danielff/programas/sisvar.html

Fonne-Pfister, R., Gaudin, J., Kreuz, K., Ramsteiner, K., & Ebert, E. (1990). Hydroxylation of primisulfuron by an inducible cytochrome P450-dependent monooxygenase system from maize. Pesticide Biochemistry and Physiology, 37(2), 165-173. https://doi.org/10.1016/0048-3575(90)90122-I

Frazão, C. A. V., Silva, P. R. R., Almeida, W. A., Pontual, E. V., Cruz, G. S., Napoleão, T. H., & França, S. M. (2018). Resistance of maize cultivars to Sitophilus zeamais (Coleoptera: Curculionidae). Arquivos do Instituto Biológico, 85, e0552017. https://doi.org/10.1590/1808-1657000552017

Ghanizadeh, H., & Harrington, K. C. (2017). Perspectives on non-target site mechanisms of herbicide resistance in weedy plant species using evolutionary physiology. AoB Plants, 9(5), plx035. https://doi.org/10.1093/aobpla/plx035

Herman, R. A., & Price, W. D. (2013). Unintended Compositional Changes in Genetically Modified (GM) Crops: 20 Years of Research. Journal of Agricultural and Food Chemistry, 61(48), 11695-11701. https://doi.org/10.1021/jf400135r

ISAAA. (2018). Global Status of Commercialized Biotech/GM Crops in 2018: Biotech crops continue to help meet the challenges of increased population and climate change. ISAAA Brief No. 54. ISAAA: Ithaca,. https://www.isaaa.org/resources/publications/briefs/54/

Jiang, Q., Niu, F., Sun, X., Hu, Z., Li, X., Ma, Y., & Zhang, H. (2017). RNA-seq analysis of unintended effects in transgenic wheat overexpressing the transcription factor GmDREB1. The Crop Journal, 5(3), 207-218. https://doi.org/10.1016/j.cj.2016.12.001

Krenchinski, F. H., Cesco, V. J. S., Castro, E. B., Carbonari, C. A., & Velini., E. D. (2019). Ammonium-Glufosinate associated with post-emergence herbicides in corn with the cp4-epsps and Pat Genes. Planta Daninha, 37, e019184453. https://doi.org/10.1590/s0100-83582019370100042

Ladics, G. S., Bartholomaeus, A., Bregitzer, P., Doerrer, N. G., Gray, A., Holzhauser, T., Jordan, M., Keese, P., Kok, E., Macdonald, P., Parrott, W., Privalle, L., Raybould, A., Rhee, S. Y., Rice, E., Romeis, J., Vaughn, J., Wal, J. M., & Glenn, K. (2015). Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Research, 24, 587-603. https://doi.org/10.1007/s11248-015-9867-7

Li, X., Ding, C., Wang, X., & Liu, B. (2015). Comparison of the physiological characteristics of transgenic insect-resistant cotton and conventional lines. Scientific Reports, 5, 8739. https://doi.org/10.1038/srep08739

Ni, X., Xu, W., Blanco, M. H., & Wilson, J. P. (2012). Evaluation of corn germplasm lines for multiple ear-colonizing insect and disease resistance. Journal of Economic Entomology, 105(4), 1457-1464. https://doi.org/10.1603/EC12115

Pereira, J. L., Antunes, S. C., Castro, B. B., Marques, C. R., Gonçalves, A. M., Gonçalves, F., & Pereira, R. (2009). Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology, 18(4), 455-463. https://doi.org/10.1007/s10646-009-0300-y

Ranum P., Peña-Rosas, J. P., & Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 105-112. https://doi.org/10.1111/nyas.12396

Ren, Y., Wang, T., Peng, Y., Xia, B., & Qu, L. J. (2009). Distinguishing transgenic from non-transgenic Arabidopsis plants by (1)H NMR-based metabolic fingerprinting. Journal of Genetics and Genomics, 36(10), 621-628. https://doi.org/10.1016/S1673-8527(08)60154-X

Ribeiro, A. C., Guimarães, P. T. G., & Alvarez V, H. V. (1999). Recomendations for use of correctives and fertilizers in Minas Gerais = Recomendações para uso de corretivos e fertilizantes em Minas Gerais. 5ª Aproximação. Viçosa, MG, Comissão de Fertilidade do Solo do Estado de Minas Gerais – CFSEMG.

Schuler, T. H., Potting, R. P., Denholm, I., & Poppy, G. M. (1999). Parasitoid behaviour and Bt plants. Nature, 400(6747), 825-826. https://doi.org/10.1038/23605

SISBAR. (2015). https://des.ufla.br/~danielff/programas/sisvar.html

Smith, K., Evans, D. A., & El-Hiti, G. A. (2008). Role of modern chemistry in sustainable arable crop protection. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 363(1491), 623-637. https://doi.org/10.1098/rstb.2007.2174

Strauch, E., Wohlleben, W., & Pühler, A. (1988). Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Streptomyces lividans and Escherichia coli. Gene, 63(1), 65-74. https://doi.org/10.1016/0378-1119(88)90546-X

Toshova, T. B., Velchev, D. I., Subchev, M. A., Subchev, M. A., Tóth, M., Vuts, J., Pickett, J. A., & Dewhirst, S. (2010). Electrophysiological responses and field attraction of the grey corn weevil, Tanymecus (Episomecus) dilaticollis Gyllenhal (Coleoptera: Curculionidae) to synthetic plant volatiles. Chemoecology, 20, 199-206. https://doi.org/10.1007/s00049-010-0051-5

Xin, Z., Yu, Z., Erb, M., Turlings, T. C., Wang, B., Qi, J., Liu, S., & Lou, Y. (2012). The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp. The New Phytologist, 194(2), 498-510. https://doi.org/10.1111/j.1469-8137.2012.04057.x

Zanuncio, J. C., Lacerda, M. C., Alcántara-de La Cruz, R., Brügger, B. P., Pereira, A. I., Wilcken, C. F., Serrão, J. E., & Sediyama, C. S. (2018). Glyphosate-based herbicides toxicity on life history parameters of zoophytophagous Podisus nigrispinus (Heteroptera: Pentatomidae). Ecotoxicology and Environmental Safety, 147, 245-250. https://doi.org/10.1016/j.ecoenv.2017.08.055

Received 2021-10-23
Accepted 2023-04-02
Published 2023-01-03