Analysis of thrips (Thysanoptera: Thripidae) diversity in avocado shows the presence of a new species and limitations of using the COI gene for differentiation of two species
Main Article Content
Thrips are important pests of avocados causing damage to the fruits, making them
unsuitable for exportation. Many of them are quarantine species and their identification is
necessary. Despite their importance, not many studies describe thrips diversity on avocado,
especially in Colombia, partly because identification of some of the species is difficult using
classical taxonomic keys. In this study, 93 adult thrips specimens were collected on avocado
and adventitious dandelion plants from plantations in the department of Antioquia, Colombia. Morphological characters were used to classify 62 of them and all of them were analyzed by PCR amplification and sequencing of cytochrome c oxidase subunit I (COI) gene and internal transcribed spacer (ITS) region. The species identified by morphological features were Frankliniella gardeniae Moulton, F. gossypiana Hood, F. panamensis Hood, Liothrips perseae Watson, Thrips palmi Karny, T. simplex (Morison), T. trehernei Priesner, Microcephalothrips abdominalis (Crawford DL), and Scirtothrips hansoni Mound & Hoddle (Tubulifera), being F. panamensis, M. abdominalis, and S. hansoni reported for the first time on avocado in Colombia. Thrips simplex and T. trehernei were also found on adventitious dandelion plants, but not on avocado. Phylogenetic analysis of COI and ITS sequences showed that most species, except for F. gardeniae and F. gossypiana were mainly identified with the COI gene. Furthermore, FST values obtained between them suggest no genetic differentiation at COI level. The results obtained here contribute to the knowledge of the diversity of thrips species found on the avocado crop in Colombia and are meaningful for pest management.
ASOKAN, R.; KRISHNA KUMAR, N. K.; KUMAR, V.; RANGANATH, H. R. 2007. Molecular differences in the mitochondrial cytochrome oxidase I (mtCOI) gene and development of
a species-specific marker for onion thrips, Thrips tabaci Lindeman, and melon thrips, T. palmi Karny (Thysanoptera: Thripidae), vectors of tospoviruses (Bunyav.). Bulletin of Entomological Research 97 (5): 461-470. https://doi.org/10.1017/S0007485307005147
BANDELT, H. J.; FORSTER, P.; RÖHL, A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16 (1): 37-48. https://doi.org/10.1093/
oxfordjournals.molbev.a026036
BOUCKAERT, R.; HELED, J.; KÜHNERT, D.; VAUGHAN, T.; WU, C. H.; XIE, D.; SUCHARD, M. A.; RAMBAUT, A.; DRUMMOND, A. J. 2014. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLOS Computational Biology 10 (4): e1003537. https://doi.org/10.1371/journal.pcbi.1003537
BRAVO-PÉREZ, D.; SANTILLÁN-GALICIA, M. T.; JOHANSEN-NAIME, R. M.; GONZÁLEZ HERNÁNDEZ, H.; SEGURA-LEÓN, O. L.; OCHOA-MARTÍNEZ, D. L.; GUZMAN-VALENCIA, S. 2018. Species diversity of thrips (Thysanoptera) in selected avocado orchards from Mexico based on morphology and molecular data. Journal of Integrative Agriculture 17 (11): 2509-2517. https://doi.org/10.1016/S2095-3119(18)62044-1
BRUNNER, P. C.; CHATZIVASSILIOU, E. K.; KATIS, N. I.; FREY, J. E. 2004. Host-associated genetic differentiation in Thrips tabaci (Insecta; Thysanoptera), as determined from mtDNA sequence data. Heredity 93: 364-370. https://doi.org/10.1038/sj.hdy.6800512
BRUNNER, P. C.; FLEMING, C.; FREY, J. E. 2002. A molecular identification key for economically important thrips species (Thysanoptera: Thripidae) using direct sequencing and a PCRRFLP-based approach. Agricultural and Forest Entomology 4: 127-136. https://doi.org/10.1046/j.1461-9563.2002.00132.x
BUCKMAN, R. S.; MOUND, L. A.; WHITING, M. F. 2013. Phylogeny of thrips (Insecta: Thysanoptera) based on five molecular loci. Systematic Entomology 38: (1) 123-133. https://doi.org/10.1111/j.1365-3113.2012.00650.x
CAMBERO-CAMPOS, J.; JOHANSEN-NAIME, R.; GARCÍA-MARTÍNEZ, O.; CANTU-SIFUENTES, M.; CERNA-CHAVEZ, E.; RENATA-SALAZAR, A. 2011. Especies depredadoras de trips (Thysanoptera) asociadas a huertas de aguacate en Nayarit, México. Acta Zoológica Mexicana 27 (1): 115-121. https://doi.org/10.21829/azm.2011.271738
ECHEVERRI FLOREZ, F.; LOAIZA MARÍN, C. E.; CANO ORTIZ, M. DEL P. 2004. Reconocimiento e identificación de trips fitófagos (Thysanoptera: Thripidae) y depredadores (Thysanoptera: Phlaeothripidae) asociados a cultivos comerciales de aguacate Persea spp. en los departamentos de Caldas y Risaralda (Colombia). Revista Facultad Nacional de Agronomía Medellín 57: 2178-2188. https://revistas.unal.edu.co/index.php/refame/article/view/24173
EDGAR, R. C. 2004. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113. https://doi.org/10.1186/1471-2105-5-113
EXCOFFIER, L.; LAVAL, G.; SCHNEIDER, S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1: 47-50. https://doi.org/10.1111/j.1755-0998.2010.02847.x
FAO. 2018. Database FAOSTAT. Disponible en: http://www.fao.org/faostat/es/#data/QC [accessed March 02 2019].
FOLMER, O.; BLACK, M.; HOEH, W.; LUTZ, R.; VRIJENHOEK, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3 (5): 294-299.
DE GRAZIA, A.; MARULLO, R.; MORITZ, G. 2016. Molecular diagnosis of native and quarantine pest thrips of southern European citrus orchards. Bulletin of Insectology 69 (1): 1-6.
HAJIBABAEI, M.; SINGER, G. A. C.; HEBERT, P. D. N.; HICKEY, D. A. 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics 23 (4): 167-172. https://doi.org/10.1016/j.tig.2007.02.001
HEBERT, P. D. N.; CYWINSKA, A.; BALL, S. L.; DEWAARD, J. R. 2003. Biological identifications through DNA barcodes. Proceedings. Biological sciences 270 (1512): 313-321. https://doi.org/10.1098/rspb.2002.2218
IFTIKHAR, R.; ASHFAQ, M.; RASOOL, A.; HEBERT, P. D. N. 2016. DNA barcode analysis of thrips (Thysanoptera) diversity in Pakistan reveals cryptic species complexes. PLoS One 11 (1):
e0146014. https://doi.org/10.1371/journal.pone.0146014
KUMAR, S.; STECHER, G.; TAMURA, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33 (7) 1870-1874. https://doi.org/10.1093/molbev/msw054
LIU, H.; LI, H.; SONG, F.; GU, W.; FENG, J.; CAI, W.; SHAO, R. 2017. Novel insights into mitochondrial gene rearrangement in thrips (Insecta: Thysanoptera) from the grass thrips,
Anaphothrips obscurus. Scientific reports 7: 4284. https://doi.org/10.1038/s41598-017-04617-5
MARULLO, R. 2009. Host-plant ranges and pest potential: habits of some thrips species in areas of southern Italy. Bulletin of Insectology 62 (2): 253-255. http://www.bulletinofinsectology.org/pdfarticles/vol62-2009-253-255marullo.pdf
MINISTERIO DE AGRICULTURA, 2018. Área, Producción y Rendimiento Nacional de aguacate Agronet. Disponible en: https://www.agronet.gov.co/Paginas/inicio2.aspx [accessed March 02
.
MONJE, B.; DELGADILLO, D.; GÓMEZ, J.; VARÓN, E. 2012. Manejo de Neohydatothrips signifer Priesner (Thysanoptera: Thripidae) en maracuyá (Passiflora edulis f. flavicarpa Degener)
en el departamento del Huila (Colombia). Ciencia y Tecnología Agropecuaria 13 (1): 21-30. https://doi.org/10.21930/rcta.vol13_num1_art:236
MOUDEN, S.; SARMIENTO, K. F.; KLINKHAMER, P.; LEISS, K. 2017. Integrated pest management in western flower thrips: past, present, and future. Pest Management Science 73: 813-822.
https://doi.org/10.1002/ps.4531
MOUND, L.; TEULON, D. 1995. Thysanoptera as Phytophagous Opportunists. In: Parker B.L., Skinner M., Lewis T. (eds) Thrips Biology and Management. NATO ASI Series (Series A:
Life Sciences), vol 276. Springer, Boston, MA.. https://doi.org/10.1007/978-1-4899-1409-5_1
MOUND, L. A.; MARULLO, R. 1996. The thrips of central and south America: An introduction (Insecta: Thysanoptera). The Florida Entomologist 79 (2): 270-271 https://doi.org/10.2307/3495826
MOUND, L.; HODDLE, M. 2016. The Scirtothrips perseae species-group (Thysanoptera), with one new species from avocado, Persea americana. Zootaxa 4079 (3): 388-392. https://doi.org/
http://doi.org/10.11646/zootaxa.4079.3.7
PUILLANDRE, N.; LAMBERT, A.; BROUILLET, S.; ACHAZ, G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21 (8): 1864-1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
RAMBAUT, A. 2014. FigTree v1.4.2. http://tree.bio.ed.ac.uk/software/figtree/ [accessed June 09 2019].
REBIJITH, K. B.; ASOKAN, R.; KRISHNA, V.; RANJITHA, H. H.; KRISHNA KUMAR, N. K.; RAMAMURTHY, V. V. 2014. DNA Barcoding and elucidation of cryptic diversity in thrips
(Thysanoptera). Florida Entomologist 97 (4): 1328-1347. https://doi.org/10.1653/024.097.0407
ROZAS, J.; FERRER-MATA, A.; SÁNCHEZ-DELBARRIO, J. C.; GUIRAO-RICO, S.; LIBRADO, P.; RAMOS-ONSINS, S. E.; SÁNCHEZ-GRACIA, A. 2017. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution 34 (12): 3299-3302. https://doi.org/10.1093/molbev/msx248
RUGMAN-JONES, P.; HODDLE, M.; MOUND, L.; STOUTHAMER, R. 2006. Molecular identification key for pest species of Scirtothrips (Thysanoptera: Thripidae). Journal Economic Entomology 99 (5): 1813-1819. https://bioone.org/journals/journal-of-economic-entomology/volume-99/issue-5/0022-0493-99.5.1813/Molecular-Identification-Key-for-Pest-Species-of-Scirtothrips-Thysanoptera/10.1603/0022-0493-99.5.1813.short
TYAGI, K.; KUMAR, V.; MOUND, L. A. 2008. Sexual dimorphism among Thysanoptera Terebrantia, with a new species from Malaysia and remarkable species from India in Aeolothripidae and Thripidae. Insect Systematics & Evolution 39: 155-170. https://
doi.org/10.1163/187631208788784093
TYAGI, K.; KUMAR, V.; SINGHA, D.; CHANDRA, K.; LASKAR, B. A.; KUNDU, S.; CHAKRABORTY, R.; CHATTERJEE, S. 2017. DNA Barcoding studies on thrips in India: Cryptic species
and species complexes. Scientific Reports 7: 4898. https://doi.org/10.1038/s41598-017-05112-7
WESTMORE, G.; POKE, F.; ALLEN, G.; WILSON, C. 2013. Genetic and host-associated differentiation within Thrips tabaci Lindeman (Thysanoptera: Thripidae) and its links to tomato spotted wilt virus-vector competence. Heredity 111: 210-215. https://doi.org/10.1038/hdy.2013.39
- Adriana Ortiz-Reyes, Tatiana M. Giraldo-Jaramillo, Claudia Ximena Moreno-Herrera, Molecular analysis of bacteria associated with refuse dumps of Atta cephalotes (Hymenoptera: Formicidae) , Revista Colombiana de Entomología: Vol. 42 No. 2 (2016)
Accepted 2021-10-27
Published 2021-07-22
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain the copyright on their work and are responsible for the ideas expressed in them. Once a manuscript is approved for publication, authors are asked for a publication license for the term of legal protection, for all territories that allows the use, dissemination and disclosure of the same.