
Abstract: Triatomines are insect vectors of the flagellate protozoan Trypanosoma cruzi, the 
causative agent of Chagas disease. This occurs when the triatomine defecates on the skin of 
the vertebrate host when it bites its host for feeding. This lesion causes the penetration of T. 
cruzi, whose infective phase is the tripomastigote, and the non-infective replicative phase 
epimastigote. Although the effects of T. cruzi on the development and survival of different 
species of triatomine bugs are known, it has not been fully described how the parasite affects 
many of the species that inhabit Mexico. Therefore, the present study aimed to investigate 
the effect of the presence of T. cruzi on triatomine development and survival. For this, five 
triatomines of each instar of each species, Triatoma barberi and Triatoma longipennis, were 
inoculated, from their second instar to their adult stage, female or male. Each triatomine was 
infected with 3-5 x105 parasites and they were incubated for 100 days and the kinetic of para-
sites in the feces and T. cruzi phases were recorded. The results showed that T. barberi and T. 
longipennis development was affected in all stages because of T. cruzi infection. It was greater 
for T. longipennis, both in its mortality, as well as time to molt in each phase.

Keywords: Chagas disease, epimastigote, metacyclogenesis, triatomine, trypomastigote,  
vector.

Resumen: Los triatominos son insectos vectores del protozoo flagelado Trypanosoma cruzi, 
agente causal de la enfermedad de Chagas. Ésta se produce cuando el triatomino defeca en 
la piel del hospedador vertebrado cuando pica al hospedero para alimentarse. Esta lesión 
provoca la penetración de T. cruzi, cuya fase infectiva es el tripomastigote, y la fase replica-
tiva no infectiva el epimastigote. Aunque se conocen los efectos de T. cruzi en el desarrollo 
y supervivencia de diferentes especies de triatominos, no está completamente descrito cómo 
afecta el parásito a muchas de las especies que habitan en México. Por ello, el presente estudio 
pretendió investigar el efecto de la presencia de T. cruzi sobre el desarrollo y la supervivencia 
de los triatominos. Para ello, se inocularon cinco triatominos de cada instar de cada especie, 
Triatoma barberi y Triatoma longipennis, desde su segundo instar hasta su estado adulto, 
hembra o macho. Cada triatomino se infectó con 3-5 x105 parásitos y se incubaron durante 
100 días, registrándose la cinética de los parásitos en las heces y las fases de T. cruzi. Los 
resultados mostraron que el desarrollo de T. barberi y T. longipennis se vio afectado en todas 
las fases a causa de la infección por T. cruzi. Fue mayor para T. longipennis, tanto en su mor-
talidad, como en el tiempo hasta la muda en cada fase.

Palabras clave: Enfermedad de Chagas, epimastigote, metaciclogénesis, triatomino, tripo-
mastigote, vector. 

Introduction

The flagellate protozoan Trypanosoma cruzi (Trypanosomatida: Trypanosomatidae) 
is the causative agent of Chagas disease, an endemic zoonosis in 21 countries in 
Latin America, from the southern United States to northern Argentina and Chile, 
and is considered the most serious parasitic disease in this hemisphere (INSP, 2021; 
Rojo-Medina et al., 2018). Vector-borne transmission occurs exclusively in the 
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Americas, with an estimated 6 to 8 million people infected 
and a mortality of 22,000 people per year (Ceccarelli et al., 
2020; de Fuentes-Vicente et al., 2018; Chagas disease in Latin 
America: An epidemiological update based on 2010 estima-
tes, 2015). 

Triatomines are important natural vectors of T. cruzi; 
they are hematophagous insects of the family Reduviidae, 
subfamily Triatominae, whose most representative gene-
ra are Rhodnius and Triatoma (Estay-Olea et al., 2020; Mi-
les et al., 2003). Out of 31 triatomine species recorded in 
Mexico, 19 have been found to be naturally infected with 
T. cruzi (Cruz-Reyes & Pickering-López, 2006). There are 
three main stages of differentiation in the parasite, i) amas-
tigote, ii) trypomastigote and iii) epimastigote, of which, in 
the vertebrate host, the trypomastigote and amastigote stages 
can be found, while in the insect the parasite can be iden-
tified mainly as epimastigote and metacyclic trypomastigo-
te (Buekens et al., 2013; De Fuentes-Vicente et al., 2019;  
Miles, 2004). 

Both Triatoma barberi (Usinger) and Triatoma longipen-
nis (Usinger) (Hemiptera: Reduviidae: Triatominae) are con-
sidered important vectors of T. cruzi in Mexico, due to their 
presence in domestic and peridomestic habitats, their wide 
geographic distribution and their high infection rate (Brenière 
et al., 2010; Martinez-Hernandez et al., 2021; Rivas et al., 
2018; Salazar Schettino et al., 2005). Similar to most redu-
viids, both species have five nymphal stages in addition to 
the adult stage, and males and females of all stages can be 
infected with T. cruzi, and transmit Chagas disease (Velás-
quez-Ortiz et al., 2022).

Several studies have shown that some biological parame-
ters in the triatomine can be affected by the parasite, deactiva-
ting defense mechanisms in the vector to infect its definitive 
host (Córdoba-Aguilar, 2020; Ramírez-González et al., 2019).

Parasitic infection causes negative effects on the survival 
of other triatomine species such as Rhodnius prolixus Stål 
(Hemiptera: Reduviidae: Triatominae), as reported by Pe-
terson et al. (2016), who reported that reduviids had lower 
survival than the control groups. In terms of development, a 
difference is also seen between infected and uninfected in-
sects, as mentioned by Elliot et al. (2015), where T. cruzi in-
fection caused a considerable delay in the time to molt. Also, 
changes in the feeding and defecation patterns of the vectors 
have also been reported (Botto-Mahan et al., 2006). In this 
case, T. cruzi infection reduced the time to host infection in 
Mepraia spinolai (Porter) (Hemiptera: Reduviidae: Triatomi-
nae); infected bugs bit about twice more often than uninfected 
nymphs and defecated 8 min after the last blood meal whereas 
uninfected bugs needed 11 min (Botto-Mahan et al., 2006).

Another example of the effects of the parasite on defeca-
tion patterns was reported in the work of Pereyra et al. (2020), 
in which insects of the species Triatoma infestans Klug, in-
fected with T. cruzi defecated earlier and in greater quantities 
compared to uninfected insects.

In addition, T. cruzi is capable of modifying the develop-
ment and body size of its vector, both in males and females 
(Antonio-Campos et al., 2019), as Botto-Mahan (2009) repor-
ted in her study that infected insects had delayed development, 
reduced survival and lower weight, compared to non-infected 
insects, similar to that reported by Cordero-Montoya et al. 
(2019) who reported that T. cruzi infection affects the same 
biological parameters in T. pallidipennis (Stål) (Hemiptera: 
Reduviidae: Triatominae).

In terms of fecundity and reproduction, Botto-Mahan 
et al. (2017) reported negative effects of T. cruzi infection 
in M. spinolai, in which uninfected females produced more 
and heavier eggs when crossed with uninfected than infec-
ted males. Uninfected males, in turn, sired more eggs and 
nymphs when crossed with uninfected than infected fema-
les. Another study also evaluated this biological parameter, 
where T. cruzi infection in R. prolixus increased the e-value 
in the second reproductive cycle, as well as hatching rates  
(Fellet et al., 2014).

Trypanosoma cruzi can also affect sexual dimorphism, 
due to hormones that may serve as communication signals 
(Alavez-Rosas et al., 2023) as reported by May-Concha et al. 
(2021), who studied the infection of T. cruzi in Triatoma di-
midiata Latreille (Hemiptera: Reduviidae: Triatominae), and 
when measuring the antennae sensilla, they reported that in-
fected insects have a greater perception of contact stimuli and 
olfactory perception than uninfected insects, which favors 
vectorial transmission of the parasite.

Although the effects of T. cruzi on the development and 
survival of different species of triatomine bugs are known, 
it is not fully understood how the parasite affects many of 
the species that inhabit Mexico, such as T. barberi, one of 
the principal species that transmits the parasite (Rivas et al., 
2018). Hence, this study aimed to know if T. cruzi affects the 
survival and development of this species, both males and fe-
males, comparing it with T. longipennis, the latter is one of 
the most abundant in Mexico (Brenière et al., 2010; Marti-
nez-Hernandez et al., 2021).

The results shown here could allow us to better unders-
tand the interactions between parasite and vector and even to 
apply methods to control their transmission and thus avoid 
infection.

Materials and Methods

Origin of insects and parasites
Triatomines were collected manually from two municipalities 
of Hidalgo State, Mexico. Triatoma barberi from El Ahorca-
do (municipality of Tecozautla, 20°29′N, 99°28′W, 2,070 m 
a.s.l.) and T. longipennis from El Pirú (municipality of Met-
ztitlán, 20°31′N, 98°47′W, 1600 m a.s.l.). (Becerril-Flores et 
al., 2007, 2010). Both, collected T. barberi and T. longipennis 
were put in plastic vials; specimens were classified according 
to the keys of Lent and Wygodzinsky (1979). The T. cruzi 
strain used was isolated from T. barberi collected at Teco-
zautla, Hidalgo, as described by Becerril-Flores et al. (2007).  
The strains were maintained by cyclical passages in adult 
CD-1 mice.

Feeding and maintenance. The research was carried out at 
the Microbiology and Parasitology Research Laboratory, Ins-
titute of Health Sciences at the Universidad Autónoma del Es-
tado de Hidalgo (UAEH) in Pachuca, Hidalgo, México.

The experiment was carried out with triatomines of both 
species, T. barberi and T. longipennis. In the case of T. bar-
beri, infected (n = 30) and uninfected (n = 30), five nymphs 
for each one from the second to fourth instars, five females 
and five males were used. On the other hand, for T. longipen-
nis, infected (n = 15) and non-infected (n = 15) nymphs were 
used, five for each one from the second to the fourth instar. 
Each insect was 5-10 days old since the last molt. It is impor-
tant to clarify that studies were not carried out with the fifth 
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nymphal and adult stages for T. longipennis because they did 
not resist infection in the first 10 days and died, therefore they 
could not be quantified.

The triatomines were kept inside transparent plastic con-
tainers with a circular section (4 x 7 cm) within folded card-
board at the bottom and another cardboard folded like a fan 
that allowed the insect to walk upwards and covered with a 
mesh to facilitate feeding. Specimens used were maintained 
for 90 days under the following laboratory conditions: In-
cubated at temperature of 28 °C and 40 %-60 % humidity  
(Figure 1).

Figure 1. Maintenance of the T. barberi colony with periods with humid-
ity of 40 %-60 %, the temperature of 28 °C, and feeding was performed 
weekly, with mice as a host.

In order to know whether T. cruzi affects triatomines, the 
insects were starved seven days before experimentation, then, 
the open end of the container was placed on the belly of a 
CD-1 strain mouse with known T. cruzi parasitemia, allowing 
the insect to access the mouse skin and feed ad libitum.

Insects were weighed before and after feeding with blood 
from infected mice, in order to determine the amount of blood 
ingested by each vector. Once the density of the mouse blood 
was known, the number of parasites that each triatomine in-
gested could be determined. For this purpose, a cut was made 
at the tip of the mouse tail in such a way that 10 μl of the blood 
was collected by weighing it with an analytical balance. This 
procedure was performed nine times to obtain an average and 
thus determine the density of the blood; likewise, to deter-
mine the parasitemia presented by the mouse, 10 μl of blood 
were collected and diluted with 40 μl of 0.85 % ammonium 
chloride and left to stand for five minutes to favor the lysis of 
the erythrocytes and to be able to make a better observation 
of the parasite. Then, this suspension was poured into a Neu-
bauer chamber to quantify the parasites.

Metacyclogenesis determination. The presence of T. cruzi 
trypomastigotes in the feces of each insect called “metacy-
clogenesis” was carried out as described by Becerril-Flores et 
al. (2007). Briefly, after seventh day after feeding and every 
third of fourth day until the 90th day of incubation, parasitic 
colonization in the midgut was determined by pressing with 

dissecting forceps on the abdomen to induce defecation and 
the feces collected on the slide were observed under a light 
microscope by staining with Giemsa for identification of T. 
cruzi stages.

The number of dead insects, time to molt, and percentage 
of triatomines molting were recorded. These groups of redu-
viids were compared with insects that were not infected with 
T. cruzi which served as controls throughout the experiment.

Statistical analysis
A two-way analysis of variance (ANOVA) test was used to 
analyze the difference between infected and uninfected tria-
tomines about molting time in T. barberi and T. longipennis. 
In all cases, P < 0.05 was considered statistically significant.

Results

Effect of the development of Triatoma barberi and Triato-
ma longipennis by the presence of Trypanosoma cruzi. To 
determine whether T. cruzi affects the development of insects, 
they were infected at different stages. The results of metacy-
clogenesis from T. barberi and T. longipennis are shown in 
Figure 2, where the number of parasites in the feces over 90 
days was recorded. All the triatomines studied were infected 
with T. cruzi in both species. For T. barberi, the number of pa-
rasites in the feces reached a maximum peak between 20 and 
40 days of infection with 8-12x106 parasites per ml and after 
this day until day 90 they did not exceed 3x106 per ml; while 
in T. longipennis the metacyclogenesis began from day 20 in 
an ascending way until day 90 or their death which allows us 
to say that the species T. longipennis was more affected by 
infection than T. barberi.

Presence of the different phases of T. cruzi on the develo-
pment of triatomines. The results of the effect of infection 
by different stages of T. cruzi on T. longipennis at different 
stages of development are shown in Figure 3. The epimas-
tigote was found in the highest quantity, in about three to 
four times more than the trypomastigote in all stages of the 
triatomines studied. In the case of T. longipennis, although 
epimastigotes were found in greater quantity than trypomas-
tigotes throughout the infection in the three stages, it can be 
observed in Figure 4 that the quantities were very close to 
each other, especially in the second and fourth stages, but in 
the third stage there was a greater difference between these 
two stages of T. cruzi, around 20 %. These results allow us to 
say that regardless of the species of triatomine, at least for the 
two species studied, the elimination of epimastigotes through 
feces would lead us to think that they are not of much risk 
since the infecting phase is the trypomastigote; however, this 
does not mean that there is no risk of infection since in any 
case the trypomastigotes are also eliminated in both species  
of triatomine.

Molting time and molting in Triatoma barberi and Triato-
ma longipennis. The time to molt is shorter in those triato-
mines that were not infected with T. cruzi for both species, T. 
barberi, and T. longipennis; when the insects were infected, 
time to molt never could be observed in T. longipennis, and 
for T. barberi was between 28 to 42 days.

The results shown in Table 1 according to ANOVA show 
statistically significant differences between infected and unin-
fected triatomines in both T. barberi and T. longipennis.
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Figure 2. Kinetics of metacyclogenesis in different instars of A) Triatoma barberi and B) Triatoma longipennis.

On the other hand, all the triatomines could molt when 
they were not infected whereas all of them could not molt 
when they were infected. For T. barberi the percentages of 
triatomines that could molt were similar.

Finally, the time that T. barberi died was shorter in in-
sects infected than the non-infected with T. cruzi. In contrast,  

uninfected T. longipennis, did not die during the experiment, 
while the infected ones died 68 days post-infection. 

Thus, T. cruzi infection affects the development and sur-
vival of triatomines in both species, being greater in T. longi-
pennis than T. barberi.
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Figure 3. Kinetics of metacyclogenesis in different phases of T. cruzi, present in T. longipennis in A) 2nd-instar nymphs,  
B) 3rd-instar and C) 4th-instar nymphs. 

Table 1. Molting period of each stage of T. barberi and T. longipennis, infected and uninfected.

Infected Not infected ANOVA of molting period data from  
infected and not infected triatomines

Species Instar Molting period 
(days)

Molting  
percentage (%)

Molting period 
(days)

Molting  
percentage (%) F, p

T. barberi

2nd 35+ 1.2 100 30+1.32 100 78.4, p<0.05

3rd 42.4+1.02 60 35+0.63 60 64.18, p<0.05

4th 28.2+0.75 80 20+1.67 100 126, p<0.05

5th 42.4+ 1.02 100 30.6+ 1.35 80 197.3, p<0.05

T.  
longipennis

2nd NM 0 60 + 0.75 60 871.8, p<0.05

3rd NM 0 65+ 1.02 100 1250, p<0.05

4th NM 0 65+ 0.75 100 1443, p<0.05

5th NM 0 63+ 1.2 80 2439, p<0.05
NM: No molting is considered until 90 days.
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Figure 4. Kinetics of metacyclogenesis in different nymphal stages of T. cruzi, present in T. barberi in A) 2nd-instar nymphs, B) 3rd-instar nymphs, C) 
4th-instar nymphs, D) 5th-instar nymphs, E) Females (♀) and F) Males (♂).
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Discussion

This work aimed to know whether the protozoan T. cruzi is 
capable of modifying the biological parameters of triatomi-
nes, such as their development and survival, since these, be-
ing insect vectors, play an important role in the transmission 
of the parasite.

We found that mortality in both species of triatomines, T. 
longipennis and T. barberi, was greater in infected than in 
uninfected insects, as predicted, and was higher in T. longi-
pennis than in T. barberi. Triatomines of both infected species 
died throughout the experiment, unlike uninfected ones; in 
T. longipennis mortality occurred earlier than in T. barberi. 
In both cases the parasites affected the triatomines, causing 
death. Triatoma longipennis was more affected, mortality was 
higher, and it took longer between molts, probably due to a 
higher infection in this triatomine species than in T. barberi, 
which had a lower mortality and a shorter time between molts.

This result was also observed by Loza and Noireau (2010), 
who made a comparison of the vectorial capacity between 
Triatoma guasayana Wygodzinsky & Abalos and T. infestans, 
the colonization capacity is different for each stage and each 
species of triatomine. In another study, Cordero-Montoya et 
al. (2019), reported that the affectation of triatomines of the 
species M. pallidipennis is due to infection by T. cruzi stra-
ins from Morelos and Chilpancingo, in which infected insects 
laid fewer eggs than the uninfected control group. 

As shown in the results, it can be observed that the fif-
th-instar stage of T. barberi is the most affected by T. cruzi. 
In this case, its size is larger compared to the other stages, 
and this is explained because the midgut is larger in the more 
advanced stages of this species of triatomine; therefore, du-
ring feeding time, they ingest more parasites than other stages 
since it needs more energy to molt.

A factor that also influences molting time and therefore 
development time is the fact that the triatomines are infected 
by T. cruzi. In this work it was observed that infected speci-
mens took more days to molt compared to uninfected ones, 
this can be explained because trypanosomes may obstruct the 
epithelium of the intestine of the insects and therefore serve 
as a barrier that interferes with the absorption of their food, or 
perhaps the parasites induce a reaction in the insect reducing 
their feeding, since in these infected bugs their weight and 
size were reduced, as reported in the works of Cordero-Mon-
toya et al. (2019) and Botto-Mahan (2009), in which infected 
insects were reported to have delayed development and lower 
weight.

The effects in terms of survival and development in in-
fected parasites compared to those not infected by T. cruzi 
can be explained by the “manipulation hypothesis”, which, 
according to Córdoba-Aguilar (2020) and Ramírez-González 
et al. (2019) explains how the parasite deactivates defense 
mechanisms in the vector, in order to infect the definitive host.

Trypanosoma cruzi infection in triatomine bugs has im-
plications for vectorial disease transmission, due to its effect 
on other biological parameters such as feeding and defecation 
patterns, as reported by Pereyra et al. (2020), where speci-
mens of T. infestans infected with T. cruzi defecated earlier 
and in greater quantities compared to uninfected specimens. 
Vectors defecate during or immediately after feeding, sugges-
ting that the greater the defecation, the greater the probability 
of transmitting the parasite, because if the volume of excre-
ment increases, the insect will release more parasites.

The following questions now arise: Physiopathologica-
lly, why are triatomine insects affected in their development 
by the presence of T. cruzi? Some hypotheses could be the 
presence of different substances produced by the parasite that 
affect the physiology of the insect, the large number of para-
sites that physically obstruct the mechanisms involved in the 
development of the vectors, the fact that they can mechani-
cally damage some of the metabolically important structures 
for triatomines, among other conjectures that may arise. This 
makes it necessary to continue investigating this aspect of the 
infection inside the vectors, to implement strategies that help 
prevent the parasitic transmission of T. cruzi and thus Chagas 
disease.

Conclusions

The results of this work showed that the presence of T. cruzi 
affects biological parameters such as the development and 
survival of both, T. barberi and T. longipennis, in their di-
fferent stages, although this affection is greater for the latter 
species, which is explained by the higher parasite load obser-
ved in it and in most of the affected stages of each species of 
triatomine. Trypanosoma cruzi also affects the ecdysis or molt 
of triatomines causing their death. These conditions suggest 
that the parasite deactivates defense mechanisms in the vector 
in order to infect its definitive host. Finally, it is necessary to 
continue with research related to the infection of insects that 
act as vectors of parasites to generate strategies to reduce di-
sease transmission.
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